CG Computacao Grafica 147

A Sierpinski Space-filling Curve based
Modeling of Height Fields

Yusnier Valle Martinez.
Universidad de las Ciencias Informaticas, Cuba.
yvm@uci.cu.

Abstract. A continuous curve in 2, 3, or higher dimensions, can be thought as a path of a continuously moving point.
This class of curves has been used in the design and implementation of spatial data structures. This paper is
essentially focused on the efficient representation of terrain models. We propose to implement a binary triangles tree
by means of the Sierpinski space-filling curve. The hierarchical nature of this curve makes it very useful to represent
this kind of spatial structure. Traversal algorithms, neighbor finding techniques, among others, are presented on the

paper demonstrating the efficiency of the proposed structure.
Keywords. Sierpinski; bitrees; triangulation; multiresolution; visualization; space-filling curve.

Introduction

Digital elevation models (DEMs) are an important component in a
wide range of application domains, such as scientific visualization,
Geographic Information Systems, mapping applications, interactive
3D games, urban planning, or flight simulators. In general, the
terrain model is not the most important component in a simulation,
hence the importance of ensuring its representation at high frame
rates. On the other hand, due to the increasing size and complexity
of DEMs, real-time display imposes significant efficiency
constraints on the visualization engine, which is forced to
dynamically trade rendering quality with usage of limited system
resources.

The problem of mesh simplification and multiresolution surface
triangulation has been widely studied over the last two decades.
This paper addresses the problem of real time visualization of
terrain datasets that entirely fit into the main memory. The
proposed technique, called SBT (Sierpinski-Bitree Triangulation), is
focused on the efficient representation of the spatial model by
means of a binary triangles tree (Evans et al., 2001). The spatial
data structure is implemented as a hierarchical Sierpinski space-
filling curve, which is the base of the algorithm proposed for fast
triangle strip generation in order to speed out the visualization
process.

Previous work

A Digital Terrain Model (DTM) is a digital representation of the
properties of the topography of a surface. Digital Elevation Models
are among the best known, which are usually stored as a regular
grids, triangulated irregular networks or contour lines.

A large number of researchers have developed algorithms for fast
and efficient terrain rendering by means of polygonal meshes. A
number of approaches are based on the principle of Delaunay
triangulation (Van Kreveld, 1997) to create Triangulated Irregular
Networks (TINs) over irregularly spaced sets of points. Another
important contribution belongs to (Hoppe, 1996) in which the
progressive mesh representation is introduced, a new scheme for
storing and transmitting arbitrary triangle meshes.

The use of spatial data structures in order to create digital terrain
models from regular meshes has proven highly effective, largely
due to the high efficiency and flexibility of these kinds of structures.
In (Pajarola et al., 2007) the authors analyze multiresolution

approaches that takes into account a certain semi-regularity of the
data, such as models based on restricted quadtrees and binary
triangles trees (Pajarola, 1998, Lindstrom et al., 1996, Lindstrom et
al., 2002, Rottger et al., 1998).

Among the most used techniques for terrain rendering in a wide
variety of applications are those that represent surfaces by means
of Hierarchies of Right Triangles (HRT), where each resulting
triangle is right-angled and isosceles. Similar to (Duchaineau et al.,
1997, De Floriani et al., 2002), the main contribution of (Evans et
al., 2001) with their Right-triangulated Irregular Network (RTIN) is
the proposal of a very efficient data structure for representing
terrain models in main memory. In the RTIN, each triangle is
recursively labeled appending 0 or 1 to the codification of its
ancestor, depending on its position as left or right child. The
representation of the model takes the form of a binary triangles
tree, for which a very efficient neighbor finding technique is
presented in the paper.

Spatial data structure

The process of building a binary triangles tree is performed from an
arbitrary set of points in the plane, which form a regular grid
represented by a two-dimensional array M of size (2”+1) x (2”+1),
n = 2. The process starts by dividing the main quadrant of the
mesh with a diagonal, obtaining two triangles as a result. The
division continues recursively by adding the midpoint (in the mesh)
of the hypotenuse of each triangle until the desired resolution is
reached.

Instead of representing the structure as a RTIN, the SBT is
represented as a one-dimensional array that, at each position,
holds a two-dimensional array of triangles, Figure 1. ]

v
|

b a

Figure 1. First 4 levels in a SBT.



SIGraDi 2009 sp

Each index in the one-dimensional array corresponds to a level in the
structure, and each two-dimensional array holds the information
corresponding to the nodes in the corresponding level. The first 4
levels are fixed patterns of triangles, and from level 1, 1 > 3, the
information from 1 — 2 is replicated 4 times in the level 1. Given a
two-dimensional array M from size (2”+1) x (2”+1), n = 2, Algorithm
1 illustrates the way the process is performed.

Algorithm 1: Creation of the binary triangles tree.

1: procedure SIERPINSKI_TREE()

2:levels—2*n+1

3: stree — new array[levels][,]

3:fori—4 1o levels-1 do

4: REPLICATE_PATTERN (i-2,i)
5: endfor

6: endprocedure

In lines 2 and 3 the structure is initialized and subsequently the fixed
patterns are constructed for levels 0 through 3. The loop from line 3
completes the process of creation by multiple callings to the
Algorithm 2, which receives as parameters the source level to
replicate to a given destiny level.

Algoritmo 2: Replica of the information stored in a source level
to a destiny level.

1: procedure REPLICATE_PATTERN (src: integer, dest: integer)

2: stree[dest] — new array[ROWS(stree(src))*2, COLUMNS(stree(src))*2]

3: srcRows — ROWS(stree(src))

4: srcCols — COLUMNS(stree(src))

5: for i=0 to srcRows-1 do

6: for j=0 to srcCols-1 do

7: stree[dest]]i,j] = stree[src][i,j]

8: stree[dest][i+srcRows,j] = stree[src][i,j]

9: stree[dest][i,j+srcColumns] = stree[src][i,j]

10: stree[dest][i+srcRows,j+srcColumns] = stree[src][i,j]

11: endfor
12: endfor

13: endprocedure

In line 2, the two-dimensional array is created for the destination
level. The section from line 5 to 10 performs a replica of the
information, and later the positions of its triangles children and
parents are updated. Each triangle requires 4 bytes for the
coordinates of its left child (black triangles, Figure 1), 4 bytes for the
corresponding coordinates of its right child (white triangles, Figure 1),
and 4 bytes to the position of its parent triangle. Additionally, 3 bits
are needed to identify the type of each triangle (there are 8 different
types according to its orientation).

The neighbor finding strategy proposed in (Evans et al., 2001) is
based on the code associated with each triangle. The way we
represent the SBT is the basis for the neighbors finding technique for
a given triangle T, since each neighbor is in the same two-
dimensional array that T in the structure. Just as in (Evans et al.,
2001), if we number the vertices of T from 1 to 3 in counter-
clockwise, the i-neighbor N of T is defined as the neighbor that does

not share the vertex i of T. The relative position to T of each N can be
calculated by adding or subtracting 1 to the T coordinates, for which
2 bits are stored in T for each Ni: one to indicate the coordinate of T
that is affected by the operation, and the other to indicate the type of
operation (addition or subtraction). Algorithm 3 returns the same-size
i-neighbor of a triangle at a valid position [level][r,c].

Algoritmo 3: Find the same-size i-neighbor of a triangle at a
valid position [level][r,c].

1: procedure I-NEIGHBOR (i, level, r, c: integer)

2: return stree[level][r+(op™)*(-1)",c+(op &1)*(-1)"]
3: endprocedure

Before line 2, the values of op y n (0 or 1) are calculated by using
logical operations depending on the parameter i. The operations
(op™) and (op &1) determine the parameter (r or c) affected by

(-1,
Visualization

The speed at which triangulated surfaces can be displayed is
decisive in almost all scientific visualization techniques (Arkin et al.,
1994). Triangle strip generation based on space-filling curves has
been widely used to generate efficient triangulations over
hierarchical data structures (Lindstrom et al., 2002, Pajarola, 1998,
Velho et al., 1999). The technique proposed in this section is based
on the Sierpinski space-filling curve, where the type of each triangle
corresponds to a segment of the curve, Figure 2 (left). The segments
of the curve are connected to each other making a simple post-order
traversal of the structure, Figure 2.

Figura 2. Sierpinski sections (left) and curve (right).

Algorithm 4 illustrates the way each triangle is drawn in a given level
of the structure.

Algoritmo 4: Draws the Sierpinski space-filling curve
corresponding to the level drawLevel.

1: procedure SIERPINSKI (level, r, ¢, drawLevel: integer)
2:if level < drawLevel

3: Ic — LCHILD(stree[level][r,c])

4: rc — RCHILD(stree[level][r,c])

5: SIERPINSKI (level+1, Ic.X , Ic.Y, drawLevel)

6: SIERPINSKI (level+1, rc.X , rc.Y, drawLevel)

7:else

8: size — ROWS(M) div 2evel2

9: endif
10: endprocedure



The lines from 2 to 6 performs a post-order traversal of the structure.
Each time a triangle T corresponding to the level drawLevel is
reached, the coordinates of T in the two-dimensional array M are
calculated given its location, its size in the SBT, and the size of the
cells in M. Each calculated vertex takes part of a generalized triangle
strip that is sent to the graphics hardware in order to be visualized.
Thus, the Algorithm 4 only uses the 66% of 3N vertices needed to
represent N triangles.

Conclusions and future work

In this paper has been presented a new strategy for representing a
binary triangles tree, in order to model and display terrain surfaces
interactively and in real time. In order to show the effectiveness of
the proposed model for fast an efficient terrain rendering, some
screen shoots were taken from a simple application running in a
Toshiba Satellite L20-273 with a 1.40 GHz Intel Celeron M360
processor and a 64 MB ATI RADEON XPRESS 200M Series (0x5A62)
graphics card. For visualization purposes, we use sample data
describing the Great Canyon and Puget Sound areas, USA, with the
elevation data artificially scaled in order to exaggerate the elevation
changes. Figure 3 shows a view from the Great Canyon data
modeled by a SBT.

/

. |

Y
%
A

Figure 3. Landscape and the corresponding
triangulation and curve.

Both the RTIN of (Evans et al., 2001) as the SBT addresses the
problem of the efficient representation in memory of the surface
data. The running time complexity of the main algorithms is the same
in both structures, in addition to the size of each structure in main
memory. (Evans et al., 2001) does not directly address the issue of
the efficiency in information visualization, a key element in this type
of applications. In a SBT each triangle T is considered as a segment
of the Sierpinski space-filling curve, and the way each T is located in
the structure allows the efficient generation of triangle strips to
speed out the visualization process.

Even when the performance shown by the visualization technique is
quite efficient, further research is needed in order to apply an
effective scheme to extract on-the-fly multiresolution triangulations
from de model. Beside this, due to GPUs are become increasingly
powerful, we are working on a CPU/GPU communication model that
is not processor intensive and takes advantage of current graphics
hardware.

CG Computacao Grafica 149

References

Arkin, E. M., Held M., Mitchel, J. S. B., Skiena S.: 1994, Hamiltonian Triangulations
for Fast Rendering, in ESA 94: Proceedings of the Second Annual European
Symposium on Algorithms, Springer-Verlag, pp. 36-47.

De Floriani, L., Magillo, P.: 2002, Triangle-based Multi-Resolution Models for Height
Fields, Curve and Surface Fitting: Saint-Malo, A. Cohen, J.-L. Merrien, L.L.
Schumaker (eds.), Nashboro Press, Brentwood, TN, USA, 2003, pp. 97-106.
Duchaineau, M. A., Wolinsky, M., Sigeti, D. E., Miller, M. C., Aldrich, C., Mineev-
Weinstein, M. B.: 1997, ROAMing terrain: real-time optimally adapting meshes, IEEE
Visualization, pp. 81-88.

Evans, W. S., Kirkpatrick, D. G., Townsend, G.: 2001, Right-triangulated irregular
networks. Algorithmica 30, 2, pp. 264-286.

Hoppe, H.: 1996, Progressive meshes, in SIGGRAPH’96: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, New York, NY,
USA, ACM, pp. 99-108.

Lindstrom, P, Koller, D., Ribarsky, W., Hodges, L., Faust, N., Turner, G.: 1996, Real-
time continuous level of detail rendering of height fields, Proceedings of SIGGRAPH
'96, pp. 109-118.

Lindstrom, P., Pascucci, V.: 2002, Terrain Simplification Simplified: A General
Framework for View-Dependent Out-of-Core Visualization, IEEE Transactions on
Visualization and Computer Graphics, Volume 8, Issue 3, pp. 239-254.

Pajarola, R. B., Gobbetti, E.: 2007, Survey of semi-regular multiresolution models
for interactive terrain rendering, The Visual Computer, 8, Springer-Verlag New York,
Inc., pp. 583-605.

Pajarola, R. B.: 1998, Large scale terrain visualization using the restricted quadtree
triangulation, IEEE Visualization '98, D. Ebert, H. Hagen, and H. lly Rushmeier, Eds.,
pp. 19-26.

Réttger, S., Heidrich, W., Slussallek, P., Seidel, H-P.: 1998, Real-Time Generation of
Continuous Levels of Detail for Height Fields, Proc. 6th Int. Conf. in Central Europe
on Computer Graphics and Visualization, pp. 315—322.

Van Kreveld, M. J.: 1997, Algorithms for Triangulated Terrains, in Conference on
Current Trends in Theory and Practice of Informatics, pp. 19-36.

Velho, L., de Figueiredo, L. H., Gomes, J.: 1999, Hierarchical Gereneralized Triangle
Strips, The Visual Computer 15, 1, pp. 21-35.



