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Abstract: Construction industry requires constant caution on construction labors
when they expose to hazardous environments. Although received fundamental safety
training, construction workers tend to insensitive to hazards because of their long
time exposures to risks. Many construction workers take unsafe behavior when they
wrongly estimated the potential risks. Therefore, the discrepancy between the
environment risks and workers' perceived risks is the major cause of unsafe behaviors.
However, current assessing approaches are subjective and post-hoc. In this paper, we
proposed a wearable Electroencephalography (EEG) system to quantitatively and
objectively assess the construction workers’ vigilance level for perceived risks. With
such data acquisition approach, the construction workers' risk perception can be
further understood and guide the safety training programs in future.
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1 INTRODUCTION

Safety is one of the most significant concerns of contractors in construction projects. Many
studies suggest construction labours' unsafe behaviours is the most frequently observed
reason of accidents (Bohm & Harris 2015; Fang et al. 2016). In Suraji et al.'s study on the
construction accident reports, 88% of the accidents is the results of workers' inappropriate
operations (Suraji et al. 2001). Haslam et al. categorize the unsafe behaviors into three
types: (1) overlooking safety due to heavy workloads and other priorities; (2) taking
shortcuts to save effort and time; (3) inaccurately perceiving risk, with feelings of
invulnerability and “it won’t happen to me.” (Haslam et al. 2005). Recent neuroscience
study suggests human's risk-Sensitivity subject to the reinforcement-learning of human
brain (Niv et al. 2012). Therefore, long time exposure to the hazardous environment
without accident makes construction workers insensitive to potential risks over time. The
negligence of safety hazards is mainly due to the incorrect estimation and lack of vigilance
towards existing risks. Many training programs are designed to raise the attention of
workers on various types of hazards, however, it is extremely difficult to track the learning
outcomes in practice because of the lack of proper assessment approaches.

Currently, the majority of vigilance level assessments utilize questionnaires to collect
worker's subjective feelings (Suraji et al. 2001), but some researchers suspect the
objectivity and reliability of the questionnaire methods (DeJoy 2005). Therefore, there is a
research gap to develop a more objective and quantitative measurement framework on
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workers' perceived risks. In this paper, we proposed a wearable Electroencephalography
(EEG) system to monitor construction worker's brain signals. With the model of vigilance
level assessment, we hope to fill the aforementioned research gap with a more rigorous
and reliable monitoring system to assess construction workers' risk perception. With the
proposed approach, project managers will able to design proper training programs and
identify risk-insensitive individual on construction site.

2 BACKGROUND

2.1 Risk Perception and Construction Safety

Understanding how workers perceive and assess risks is extremely important for
construction safety management, since the perceived risk determines how they respond to
the risks (Arezes & Miguel 2008; Krallis & Csontos 2006). Deery studied drivers' risk
perception when they confront various hazards and summarized this process into four
steps: hazard detection, risk perception/acceptance, self-assessment, and action (Deery
1999). People tend to be opportunism when they assume the risk is minor in the hazardous
environment and themselves are skilful enough to avoid risk (Bohm & Harris 2015;
Stewart et al. 2012). In Bohm and Harris’ study, the measured “objective risk” shows a
huge difference with the workers' self-reported risks (Bohm & Harris 2015). Many factors
affect the risk perception ability of a person, such as experience, concentration, and
emotion (Krallis & Csontos 2006). Dzeng et al. studied the construction workers' ability in
hazard inspection and found that comparing to novice workers, the experience workers
are more consistent and faster in risk assessment (Dzeng et al. 2016). Working memory/
concentration level is another factor affect the workers' detection of risk stimuli in the
surrounding environment (Chen et al. 2016). When workers devote more working memory
and vigilant to the tasks associated risks, they can avoid injuries and end up with near-
miss accidents (Yang et al. 2016). Therefore, many risk-taking or unsafe behaviors is the
results of mismatching between subjective perceived risks and objective actual risks.

Based upon these findings, many researchers suggest hazard recognition training to
help workers develop proper understanding on hazards and correct their unsafe behaviors
(Stewart et al. 2012; Rethi et al. 1999). After training, researchers developed questionnaires
to understand the risk perception capacity of construction workers and future improve
these programs (Cheng et al. 2012). However, accurately assessing the workers' perceived
risk or vigilance level at various hazardous conditions is extremely difficult.

2.2 Risk Perception and EEG

Working memory (mental workload) is the major cognitive resource for risk perception
for construction workers (Sweller 1988). When people are more vigilant, there is more
working memory allocated to precaution; when they are less vigilant, more working
memory is allocated to work activities (Chen et al. 2016; Mitropoulos & Namboodiri 2010).
Based-on such rationale, researchers proposed both subjective and objective measurement
approaches. NASA Task Load Assessment (NASA-TLX) is one of the most widely used
subjective attention measurement framework developed by the US National Aeronautics
and Space Administration (Hart & Staveland 1988). Recent objective measurement
approaches utilize neuroimaging techniques with functional magnetic resonance imaging
(fMRI) and EEG (Olbrich et al. 2009). Although fMRI equipment is more reliable and
accuracy, due to its bulky size and formidable price, wearable EEG shows better
engineering potential.
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Previous studies suggest EEG brain signals have a significant correlation with human
mental activities (Pfurtscheller & Silva 1999; Sterman & Mann 1994). In addition, the raw
EEG signals can be decomposed to signals at various frequency bands, which associated
with different brain activities (Demos 2005; Buzsaki 2011). These rhythms can be
categorized into five frequency bands based on a dichotomous division.

e Delta waves (1 - 3 Hz): associated with unconsciousness, deep sleep, or catalepsy;

e Theta waves (4 - 7 Hz): associated with creativity, spontaneity, distractibility,
inattention, daydreaming, depression, and anxiety;

e Alpha waves (8 - 12 Hz): associated with physical and mental relaxation as well as
awareness of one's surroundings;

e Beta waves (13 - 30 Hz): associated with focusing, analysis, conscious alertness,
tension, and fear;

e Gamma waves (31 - 50 Hz): associated with problem solving, learning, and facing

cognitive challenges.

Energy or power spectral densities (PSDs) is a valid indicator for the energy
distribution among each frequency bands. Different PSDs reflect which part of the brain
is activated and a subject's concentration level (Cohen 2014). Lin et al. also suggested that
the spectral dynamics of EEG was strongly related to declining vigilance (Lin et al. 2012).
Olbrich et al. proposed a vigilance stage model and utilized PSDs of different EEG
frequency bands to classify the vigilance level (Olbrich et al. 2009). In this research, we
propose to employ wearable EEG to automatically monitor the vigilance states of
construction workers. These vigilance states are the direct and quantitative representation
of the perceived risks of workers.

3 METHODOLOGY

3.1 On-site Experiment

3.1.1 Experiment Design

To examine the proposed method, we designed an experiment to gather the construction
workers' EEG response to different hazardous conditions. We invited real construction
workers who have different year of experiences and type of trades to test the consistency
of their perceived risks.

The task in the experiment is moving two mental tubes to a predefined material deposit.
On the path to the destination, we set up several obstacles. There were four obstacles in
total including (Obs 1) a pile of wood boards, (Obs 2) an overhead rebar, (Obs 3) few iron
tubes, and (Obs 4) a pile of rebar. The wood boards pile was around 30 cm high; the
overhead rebar had a height of 160 cm; the iron tubes and rebar pile were close to each
other, so the subjects needed to pass both of them consequently in a short time. All the
subjects were required to relax for a few seconds first and then pick up the iron tubes.
They are required to wear an EEG monitoring headset and repeat the task for three times.

3.1.2  Subjects and Apparatus

Ten healthy construction workers participated in this study, and all of them were male
(mean age 51.8 + 3.7 years), right-handed, and fully rested before the experiment. Two of
the subjects have more than 20 year experience, seven of them have working experience
less than 7 years, and one recently joint the crew. Three of them were mason and rest of
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them were choreman. All participants were well informed of the nature of this study,
which was approved by the university human ethics review committee.

In the experiment, we utilized Emotive EPOC+ as the EEG monitoring device [56].
The EPOC+ is multi-channel EEG monitoring headset with 14 fixed channels and 128 Hz
sampling rate. The applying location of all channels followed the internal 10-20 system,
including AF3, F7, F3, FC5, T7, P7, O1, 02, P8, T8, FC6, F4, F8, and AF4. The entire the
experimental procedures were recorded with a camera for further video analysis.

3.2 Vigilance Assessment with EEG signal processing

The most well established vigilance assessment framework is EEG-vigilance stages model,
which divides the vigilance level based on the dominant alpha bands and those with low-
voltage non-alpha bands (Loomis et al. 1937; Roth 1961; Hegerl et al. 2008). The summary
of vigilance stages and their frequency features is listed in the Table 1.

Following vigilance stage shows the human perceived risk based on their EEG PSD
distribution. In this research, we focus on the spatial performance of different brain regions
at different vigilance level and outcome consistency among different workers.

Table 1: Vigilance stages

Vigilance = Behaviors Alpha Band Power EEG Patterns
Stage
Al relaxed
wakefulness alpha power (01+02)>55% of
A2 relaxed alpha power (F3+F4+01+02)
wakefulness alpha power (8-12 Hz) of (F3,
A3 relaxed F4, 01, 02)" >50% of total power  alpha power (F3 + F4)>55% of
wakefulness (2-12 Hz) of delta, theta and alpha power (F3+F4+01+02)
B1 drowsiness alpha total power (F3+F4+01+02)- alpha
power (F3+F4+01+02) <200uV 2
B2 loss of

. Total Power (F3+F4+01+02)- alpha
conscious
B3 power (F3+F4+01+02) >=200 uV?

* T3, F4, O1 and O2 are index of EEG channels

4 RESULTS AND DISCUSSION

4.1 Experiment Results and Raw Data

The experiment results were grouped as different actions including (1) Relax; (2) Pick up;
(3) Avoid Obs 1; (4) Avoid Obs 2; (5) Avoid Obs 3 and 4. The raw data sets were tagged
based on the action events. All subjects were indexed for each trial. Since the time-
frequency analysis normally focuses on one individual for the spatial analysis, subject 10
was selected since he had the least working experience. The statistical analysis utilizes
data of all trials (10 subjects and each subject had three trials).

4.2 Identification of Vigilance Stages and Spatial Analysis

The raw data was processed with Fourier Transformation to calculate the PSD of F3, F4,
O1 and O2 channels. Based on the EEG-vigilance stages model, Table 2 reports the
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identified vigilance levels for the subject 10. Then this identified results were compared
with spatial analysis to evaluate the response at different functional regions of the brain.

Table 2: Identified Vigilance Stage of the Subject 10

Subject Trial Action1l Action2 Action3 Action4 Action5

Index Index
1 A3 A2 A2 Al Al
10 2 A3 Al A2 A3 Al
3 A3 A3 A2 Al Al

Following Figure 1 shows the spatial PSD of the subject. Comparing across actions, it can
be observed that comparing to relaxation activity, the obstacle avoiding activates shows
significant differences in various channels. Different from pick up activity, the obstacle
avoiding activities stimulate the frontal and middle region activated. Right polar seems
more sensitive to risk identification comparing to left polar.
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Figure 1: Spatial PSD of Different Actions for Subject 10
4.3 Statistical Analysis

To avoid the bias caused by individual differences, we also conducted a statistical analysis
for all trials. Since the identified EEG-vigilance stages are categorical, a multinomial
logistic regression was performed. Table 3 shows part of the analysis results.
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Table 3: Multinomial Logistic Regression on Actions and EEG channels (Partial)

Model 1 Model 2

StageA1/A3 StageA2/A3 StageA1/A3 StageA2/A3

Intercept 311.00 199.28 49.03 -27.18
Pick up 14.24** 10.74**
Avoid Obs1 12.96™* 13.54™
Avoid Obs2 18.09** 17.66™
Avoid Obs3&4 10.04* 10.10**
01 -8.99 51.24 -16.31 2.67
02 -389.10 -256.74 -55.24 59.10
F3 290.15™* 202.78"* 42.24* 12.52
F4 220.66 233.41 30.50 82.89**
Deviance of the fit 334 76.29

The results of statistical analysis suggest there are distinctive signal patterns across
different actions types, since all coefficients have statistically significant p-values (less
than 0.05). One of the four EEG-vigilance assessment channel (F3) also shows significance
in both models. In addition, the value of deviance of the fit indicate dummy variables of
actions could greatly improve the model's accuracy.

5 DISCUSSION AND CONCLUSIONS

Measurement of construction workers' the ability of risk perception plays a vital role in
safety management. This paper proposes to use EEG signals as the assessment tool to
quantify the workers’ vigilance and perceived risk level. The onsite experiment suggests
the EEG signal from different spatial channels are sensitive to the variation in the EEG-
vigilance signals. Comparing to the current state-of-the-art, this proposed method is more
objective and efficient for future development of automatic vigilance diagnose and hazard
detection. The implementation of the proposed method can not only supplement the
current observation approach but also suitable for post-hoc accident analysis as well.
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