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Abstract: During performance-based architectural design, facade elements that have
an influence on performance need to be integrally considered. This study addresses
the need to support building envelope design, and specifically the design of
photovoltaics-installed shading devices. Photovoltaics-installed shading devices
simultaneously influence various performance criteria such as building energy
consumption, daylighting and electricity production. Therefore, their design needs
the support of optimization tools that help evaluate different design alternatives based
on these performance criteria. This paper presents an evolutionary optimization
approach that is extended from a model developed previously by the author, which
optimizes multiple performance objectives towards the search for optimal envelope
configurations. The tool is tested on a number of building forms with different
photovoltaics-integrated shading devices, and a comparative evaluation is presented.
The results show that genetic optimisation can provide meaningful insight to the
problem towards well-informed decisions being taken.

Keywords: Building-integrated photovoltaics; shading device; energy use; daylighting
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1 INTRODUCTION

Building shading devices and building-integrated photovoltaics (PV) are building elements
that help improve building performance. Shading elements help control solar gains and
reduce cooling loads and the associated energy use resulting from solar radiation. They
also increase heating loads due to reduced solar gains during heating season. Shading
devices can also mitigate the negative consequences of direct sunlight such as visual
discomfort and glare. Moreover, shading elements have an impact on indoor
environmental quality and occupant comport. Correct daylighting improves indoor
conditions when used as the primary lighting source and reduces the need for artificial
lighting, resulting in reduced energy consumption. Another benefit of shading is that they
allow for larger opening areas and help increase visual access to the outside environment.

PV modules can be used on buildings by replacing other building components or
become a part of the envelope when suitable insolation and temperature conditions are
satisfied (Lai and Hokoi 2015). For instance, shading devices can be used to install BIPV,
so that they can simultaneously control solar gains and generate electricity from solar
energy. PV module orientation is an important decision, as the monthly solar irradiation
values of different orientations are different (Figure 1). Moreover, shading devices can also
reduce daylight availability and block useful solar radiation in winter (Mandalaki, Zervas
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et al. 2012). Therefore, PV-installed shading design is a multi-objective decision problem
that needs the satisfaction of conflicting objectives. Previous research has addressed the
design of PV-installed shading devices to study the effects of different shading-type PV
cladding designs on the total energy saving (Sun and Yang 2010), for ventilated double
fagade remodeling of the BIPV (Yoo and Manz 2011) or for different climates and fixed
shading device types (Mandalaki, Zervas et al. 2012). However, these existing approaches
have limitations regarding the evaluation of several selected alternatives with no
guarantee of reaching optimality. Evolutionary methods, when integrated with
performance simulation tools, have proven to be effective in supporting design decisions.
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Figure 1: Monthly global irradiation received by typical PV panels (kWh/m2) for
Ankara, Turkey. Results obtained from PVGIS (Stri, Huld et al. 2005).

2 EVOLUTIONARY METHODS FOR DESIGN OPTIMIZATION

Simulation-based optimization methods can effectively support building design towards
well-informed decision making. Multi-objective optimization that can provide visual and
analytical feedback for early stage decision-making (Lin and Gerber 2014). Exploring large
solution spaces during performative design and solving design problems with difficult
fitness landscapes is possible by the systematic evaluation of performance using
evolutionary computation (Turrin, von Buelow et al. 2011). Especially for the design of
buildings with high energy performance, optimization methods can successfully automate
design search (Attia, Hamdy et al. 2013).

Evolutionary multi-objective methods have shown great potential for early-design
decision-making in reaching optimal solutions that satisfy multiple objectives. NSGA-II
(Non-dominated Sorting Genetic Algorithm-II) is a dominance-based elitist optimization
algorithm that can balance exploitation and exploration (Deb, Pratap et al. 2002). During
selection, a higher bias is applied towards non-dominated solutions for exploitation. In
general, a solution Sj is said to dominate solution S, if it is no worse than S, in all
objectives, and if S; is better than S, in at least one objective. For exploration, NSGA-II
aims to preserve solution diversity by assigning individuals a crowding distance that
indicates the density of their neighbourhood in the objective space. Crossover and
mutation are applied on individuals with different probabilities, the old and new
individuals are merged and the new list is sorted. The best individuals in this extended list
are transferred to the new generation. This process is repeated until the non-dominated
solutions of the final generation, namely the Pareto-front, are generated.
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3 THE OPTIMIZATION MODEL

An optimization tool that implements multi-objective genetic algorithm (NSGA-II
algorithm) that was previously developed by the author (Dino and Ucoluk 2016) is adapted
for this study. For this study, shading devices and PV panels are integrated to the existing
energy models and the optimization algorithm. The tool varies the parameters of the
shading devices together with the window-wall ratios. The tool is seamlessly integrated
with EnergyPlus through the OpenStudio SDK to quantify the two objective functions.

3.1 Calculation of performance objectives

The tool aims to minimize the building's net energy consumption (NEC) and maximize
daylight autonomy (DA). NEC is calculated by aggregating heating, cooling and lighting
energy use, and subtracting from this value the photovoltaics generated energy (Equation
1). It must be noted that NEC does not represent the total energy consumption, but only
those that are influenced by the fagade. Daylighting performance is calculated using
daylight autonomy (DA), which aggregates the number of hours that thermal zones are
illuminated without the need of artificial lighting (Equation 2). For this, the target
illumination level for each thermal zone (ET,) needs to be specified, and the actual daylight
illumination level (EM,) needs to be calculated by simulation. An asymmetrical Gaussian
membership function is formulated that assesses zones' hourly DA on a scale of 0 to 1,
while favouring the positive areas in the vicinity of its peak point. The reason that lighting
performance is made part of both objective functions is because they can be in conflict
with each other when there is too much daylighting. While Qgectriciry minimizes lighting

electricity use by maximizing the daylight, DA seeks for the closest match between the
required lighting and actual daylighting values.

NEC = Qgy — Qpy (D
QEU = Qheating + Qcooling + Qelectricity
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3.2 Modelling and parameterization of the photovoltaic panels, shading
devices and windows

PV panels are used on shading devices and at the rooftop (Figure 2 and 3). On the south,
continuous overhang shading devices are placed on each floor. The distance from the floor
level (hf) and from the building (dp), the depth of shading surfaces (ds) and the distance of
tilt (d¢) define the shadings. On the west, vertical louvres are defined by the distance from
the building (dp), the depth of shading surfaces (ds), distance of tilt (d;) and panels spacing
(hf). These parameters are varied by the genetic algorithm. The conversion efficiency solar
cells on shading devices is 17% and their fraction of the surface area with active solar cells
is 90%. For the rooftop PV panels, the model is simplified such that a cumulative value for
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the fraction of active solar cells is taken as 65%, which considers both the placement gaps
between the panels (placed with a 32° angle) and solar exposure reduction due to self-
shading. The rooftop panels' conversion efficiency is 17%. All PV panels, placed both on
the shading devices and at the rooftop, are connected to a generator with an electric power
output value of 9000W. The electricity generated by the generators (Qpv) are used as part
of the objective value in Equation 1. A high-performance window material is used on the
south, east and west facades with a U-value, solar heat gain coefficient (SHGC) and visible
transmittance (VT) of 3W/m?K, 0.35 and 0.45. On the north facade, the same performance
parameters are 3W/m?K, 0.86 and 0.90 respectively. The windows are placed on all four
facade directions, 10m apart from each other. The window dimensions are varied by the
algorithm while maintaining an aspect ratio of 1:2 horizontally.

ROOFTOP:
PV panels.

active solar cells: 65%

SOUTH:
Overhang shading
PV panels

EAST / WEST:
Vertical louvre
shading PV panels

active solar cells: 90%

active solar cells: 90%

Figure 2: The placement of PV panels
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Figure 3: The parameterization of the shading devices on the south facade, side
view (left) and on the east and west facade, plan view (right)

The chromosomes maintain the shading device dimensions (hy, dp, ds and di) and the
thermal zones' wwr values (Table 1) using value encoding scheme. The NSGA-II algorithm
is used for selection, cross-over and mutation. During crossover, a selective bias is placed
upon either parent, such that the genes of the preferred parent are transferred to the
offspring with a higher probability of 70%. Individuals are selected with binary tournament
selection. After crossover, individuals are mutated with a probability of %10 by replacing
the current value with a new random value.
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Table 1: Decision variables of GA

GA variables Allowed value ranges
hy (4.0, 5.5)
db (0.1, 1.0)
ds (2.0, 6.0)
dp (0, 2.5)
wwr (for each zone, four directions) (0, 1)

4 CASE STUDY

To test the proposed optimization tool, a comparative study that applies the optimization
algorithm on different building forms is carried out. The test building has a 7200 m?
building program with thermal zones with different performance requirements (Table 2).
Five rectangular prisms with different aspect ratios (width: depth: height) of are
instantiated (Figure 4). Aspect ratio has an influence on GA fitness values due to (1)
different facade areas on the south facade made available for PV panels, (2) different
rooftop floor areas made available for PV panels, (3) different spatial depths that have an
influence on daylighting, (4) form compactness (building volume / surface area) that has
an influence on thermal gains/losses. The PV panels are placed on south-facing shading
devices and the rooftop in Building A,B,C and D, and the east / west facing shadings and
the rooftop in Building E. EnergyPlus 8.2 is used to calculate the energy use, PV energy
production and daylight illumination. The Gaussean fitness function is applied to calculate
DA with values for kand /taken as 30 and 150. The genetic operations use the probability
values presented in Section 3.3. The population size is 70, and the number of generations
is 50. The resulting Pareto-fronts are shown in Figure 5.

Table 2: Performance metrics of the building thermal zones

Thermal zone People (p/m? (for  Lights + Electric ~ Illum. setpoint

120 W/p) equip. (W/m?) (Ez;) (lux)
1. Study 0.056511 20.76 500
2-Books 0.005 10.58 150
3-Offices 0.056511 20.76 400
4-Cafeteria 0.29 16.4 250
5-Meeting 0.056511 20.76 150
6-Leisure 0.29 16.4 250
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Figure 4: Five form alternatives with different aspect ratios (width:depth:height).
Red surfaces indicate the PV-installed surfaces

4.1 Discussion on results

To analyse the results, we use several metrics to characterize different forms, such as form
compactness (V/A), footprint (wd) and south fagade area (wh), building energy
performance (NEC, Qru, Qpv), daylighting performance (DA), wwr and shading device
parameters (Table 3). The results show that Qpyis most determinant in the eventual energy
performance, which is also proportional to the building surfaces made available for PV
installation. The maximization of the rooftop (Form C) has a bigger impact than of the
south facade (Form B), as monthly average solar irradiation on horizontal planes is much
higher than of vertical planes (Figure 1). Therefore, although active solar cells constitute
only %65 of the rooftop, Form C generates more energy than Form B. Similarly, Form C
consumes less energy (Qgy) than Form B due to its larger footprint and compact form. On
the other hand, Form C performs relatively poorly in DA due to its large footprint, spatial
depth and its failure to illuminate all it's the spaces with daylight. A trade-off between two
objectives becomes apparent in buildings with large footprints. In such cases, alternative
solutions that introduce daylight into spaces, such as atriums or light wells, can be
formulated.

Daylight autonomy is highest in A, B and D, which are compact forms with less spatial
depth (V/A = 0.55 for A and D) or have an east-west orientation (wh = 18 for B). Spatial
depth and south-west orientation has a negative effect on daylighting performance. PV
gain is the second highest in E due to its freedom to arrange the frequency of PV panels
(dt). Although east and west oriented PVs benefit less from solar irradiation, their high
density can considerably increase PV electricity production. However, another objective
—that was not considered by the algorithm- is the initial and lifecycle costs of PV panels.
E increases the number of panel on east and west facades to increase PV gain, but at the
same time increases the initial cost, which might reduce the advantages made apparent by
the algorithm. Moreover, the orientation of E has a negative effect on daylighting, as
daylight in the east/west direction is difficult to control even with shading devices.

The wwr values show that high aspect ratio of the building footprint (Building B) has
a negative influence on window opening sizes. On the contrary, building forms with large
footprint area (Building C) have to increase the wwr to be able to introduce sufficient
daylight to the depths of the form. In addition to energy use and daylighting, wwr also has
an effect on visual openness and can positively contribute to indoor environmental quality.
Therefore, high wwr values might be desirable for all or some facade orientations.
Although not considered as an objective function in this tool, the wwr can be integrated
as part of the evaluation procedure, such that it is maximized in the desired directions
while also satisfying other performance objectives.
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Figure 5: Pareto solutions

Table 3: The average values of the Pareto solutions of buildings A, B, C, D and E

unit A B C D E
Compactness

(V/IA) 0.55 0.50 0.46 0.55 0.50

South facade (wh) 12.00 18.00 9.00 12.00 6.00

Footprint (wd) 12.00 12.00 24.00 9.00 12.00
Energy use (kWh)  918.70 -597.39 1330.72 1201.55 -470.205
Energy Con. (kWh)  4629.43  3949.63 3890.76 4390.31 4801.92
PV gain (kWh) 3710.73  4547.02 5221.48 3188.76 5150.25
Daylight Auto. (lux) 1789.03  1905.63 1439.93 1864.51 1342.953

WWTI gross 29.67 23.71 33.66 25.31 39.58

wwr North 23.01 10.77 25.38 12.17 40.26

wwr East 24.01 21.21 29.96 23.37 27.02

wwr South 42.41 37.57 41.28 23.90 32.36

wwr West 27.26 23.43 38.36 41.79 54.33

hf (m) 543 5.46 5.38 5.30 2.10

hl (m) 1.65 1.42 1.36 1.39 4.00

db (m) 0.42 0.47 0.28 0.22 1.50

ds (m) 5.93 5.92 5.98 591 4.00

total PV area 24.00 30.00 33.00 21.00 48.00

If the results are to be implemented, generalizations regarding the energy model first need
to be concretized. The tested buildings have a very simple geometry and theoretical
material properties, which need to be substituted with the detailed form and material
specifications. Similarly, the PVs need to be modelled after actual product specifications

463 | Proceedings JC3, July 2017 | Heraklion, Greece



Evolutionary Optimization of Building Envelope Design with Photovoltaics-Integrated Shading Devices

rather than simple performance characteristics and approximated sizes. The HVAC
system is simplified into an ideal air load system with full efficiency, which needs to be
replaced with actual HVAC components.

5 CONCLUSIONS

An optimization tool for building envelope design with PV-integrated shading devices and
an approach to evaluate optimization results are presented. The comparative analyses
show that different building forms respond in various ways to the tested envelope
elements. Moreover, it becomes evident that other objectives that were not formally
considered as part of the initial objective function can play an important role in
optimization, such as initial costs of PVs or wwr. Therefore, there is a need to enrich the
objective space in the future to make a thorough evaluation of buildings.
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