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PAVEMENT ANOMALIES DETECTION AND
CLASSIFICATION USING ENTROPIC TEXTURE
SEGMENTATION AND SUPPORT VECTOR MACHINES

Georgios M. Hadjidemetriou! and Symeon E. Christodoulou?

Abstract: Presented herein is a vision-based method for the detection of anomalies on
roadway pavements, utilizing low-cost video acquisition and image processing of
road surface frames collected by a smartphone (or camera) located on a vehicle
moving in a real-life urban network, along with entropy-based texture segmentation
filters, and support vector machine (SVM) classification. The proposed system, which
has been developed in MATLAB, pre-processes video streams for the identification
of video frames of changes in image-entropy values, isolates these frames and
performs texture segmentation to identify pixel areas of significant changes in
entropy values, and then classifies and quantifies these areas using SVMs. The
developed SVM is trained and tested by feature vectors generated from the histogram
and two texture descriptors of non-overlapped square blocks, which constitute images
that includes “patch’ and “no-patch’ areas. The outcome is composed of block-based
and image-based classification, as well as measurement of the patch area.

Keywords: pavement condition evaluation, road anomaly detection, vision-based,
entropy, texture segmentation.

1 INTRODUCTION

In recent years several national and transnational roadway management programs, such
as the USA's "LTPP" and the EU's "Ten-T" programs, have been put to action in an effort
to improve on the condition of transport networks and to mitigate the effects of time and
of heavy usage on these networks. In fact, several regional and international studies
estimate the annual potential impacts of changes in roadway maintenance expenditures
(as these impacts relate to vehicle operating costs, safety, the environment, and the wider
economy) at billions of dollars worldwide (Chatti and Zaabar 2012, National Economic
Council 2014, Gleave et al. 2014). With the aforementioned in mind, it is imperative that
automated roadway pavement condition assessment technologies are employed, so that
sustainable and efficient roadway network management systems are developed. A key
function of such technologies should be the automatic roadway defects detection and
classification.

The paper presents a vision-based method for the automated detection of pavement
anomalies by use of low-cost (smartphone) technology, image segmentation via entropy
texture filters, and object classification via support vector machines (SVM). The images
classified as containing pavement anomalies by the use of entropic measures, are
processed by another algorithm which -classifies pavement patches, using SVM
classification. In spite of the fact that patching is a pavement maintenance activity, it is
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also a type of pavement distress since it does not completely restore the pavement to its
initial condition. Pavement condition manuals evaluate patching based on the percentage
of the examined pavement area that contains patches (Kay 1992) and use this information
for rating the pavement condition. Further to this brief introduction the paper includes a
literature review on the state of knowledge in automated roadway anomaly detection. The
main characteristics of a case-study implementation are then presented and finally the
results and efficiency of the proposed method are discussed.

2 BRIEF LITERATURE REVIEW

The automated detection of roadway pavement anomalies by use of low-cost technologies
has been the focus of several research efforts in the past decade, with these efforts
generally classified in two categories: vibration-based and vision-based methods. A brief
summary of some of the vision-based approaches and of their findings is listed below.

In the work by Nejad and Zakeri (2011) an automated imaging system was described
for distress detection in asphalt pavements. The work focused on comparing the
discriminating power of several multi-resolution texture analysis techniques using wavelet,
ridgelet and curvelet-based texture descriptors, and concluded that curvelet-based
signatures outperform all other multi-resolution techniques for pothole distress, (yielding
accuracy rates of 97.9%), while ridgelet-based signatures outperform all other multi-
resolution techniques for cracking distress (accuracy rates of 93.6%-96.4%). Radopoulou
and Brilakis (2015) presented an application of the Semantic Texton Forests (STF)
algorithm for automatically detecting patches, potholes and three types of cracks in video
frames captured by a common parking camera, reporting over 70% accuracy in all of the
tests performed, and over 75% precision for most of the defects. Subsequently, Radopoulou
et al. (2016) utilized video data collected from a car parking camera to detect defects in
frames and classified detected defects according to their type and severity. The researchers
reported that the initial identification of frames including defects produced an accuracy of
96% and approximately 97% precision.

Tsai et al. (2010) assessed the performance of six segmentation algorithms, associated
with cracks, concluding that the dynamic optimization based method had the best
performance amongst them. The pavement distress type of raveling was quantified by
Mathavan et al. 2014 using a combination of two- and three-dimensional images. A
computer-vision approach was the subject of the work by Koch and Brilakis (2011), who
proposed a method for automated pothole detection by which an image was first
segmented into defect and non-defect regions using histogram shape-based thresholding,
and then the texture inside a potential defect shape was extracted and compared with the
texture of the surrounding non-defect pavement in order to determine if the region of
interest represents an actual pothole. The aforementioned camera-based pothole-detection
method was subsequently extended by Koch et al. (2013) for assessing the severity of
potholes, by incrementally updating a representative texture template for intact pavement
regions and using a vision tracker to reduce the computational effort. Related was also the
work by Jog et al. (2012) who used vision-based data for both 2D recognition and for 3D
reconstruction, based on visual and spatial characteristics of potholes, while measured
properties were used to assess the severity of potholes. In the work by Ryu et al. (2015), a
pothole detection method was presented using various features in two-dimensional images.
The proposed method first uses a histogram and the closing operation of a morphology
filter to extract dark regions for pothole detection, and then candidate regions of a pothole
are extracted with the use of features such as size and compactness. Finally, a decision is
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made on whether candidate regions are potholes with a comparison of pothole and
background features.

To the authors’ knowledge, the most efficient and accurate vision-based patch
detection method was proposed by Radopoulou et al. 2013. The algorithm considers some
criteria for patch length, width and area. Though, their method performs high accuracy
detection results if there is only one patch whose entire area is included and occupies 10%
- 40% of the image. At a later stage, Radopoulou and Brilakis (2015) improved their
algorithm, by detecting a patch based on its closed contour and texture, and passing it to
a vision-tracking algorithm in order to trace it in subsequent video frames. Nonetheless,
some false positives appear in the case of shadows, while the patch should still occupy a
predetermined proportion of the frame (2.5% - 65%).

3 METHODOLOGY

3.1 Anomaly Detection Using Entropic Measures in Images and Streaming
Video

The proposed approach makes use of image texture segmentation with entropy texture
filters, and has been implemented on MATLAB's computer vision toolbox. Entropy is a
statistical measure of randomness, and an entropy filter can characterize the texture of an
image by providing information about the local variability of the intensity values of pixels
in an image. For example, in areas with smooth texture, the range of values in the
neighbourhood around a pixel will be a small value; in areas of rough texture, the range
will be larger. Similarly, calculating the standard deviation of pixels in a neighbourhood
can indicate the degree of variability of pixel values in that region.

The entropy (E) of a grayscale image (I) is defined as E=-sum[p.*log2(p)], where p
contains the histogram counts of the intensity image. By default, entropy uses two bins
for logical arrays and 256 bins for uint8, uint16, or double arrays. The entropy filter
(J=entropyfilt(I)) of a grayscale image returns the array (J), where each output pixel
contains the entropy value of the 9-by-9 neighbourhood around the corresponding pixel
in the input image I (Fig. 1). Thus, the entropy filter creates a texture image. For pixels on
the borders of 1, entropyfilt uses symmetric padding, where the values of padding pixels
are a mirror reflection of the border pixels in 1.

The steps used in the proposed entropy texture segmentation approach are as listed
below, with Fig. 2 serving as a reference for the resulting image at each analysis step:

1. Read a video of the roadway pavement to be analysed.

2. For each video frame, convert it to grayscale image (Fig. 2a) and calculate
the overall image entropy.

3. If the computed image entropy deviates from the running average, then

presume that the image contains a pavement anomaly (manifested in the image as texture
anomaly) and isolate it for further analysis.

0 Create a texture image (Fig. 2b).

0 Threshold the image to segment the textures (a threshold value of 0.8 is used
as default value, for it is roughly the intensity value of pixels along the boundary between
the textures). A function is also used to smooth the edges and to close any open holes in
objects.

0 Partition the entropy image (Fig. 2b) into a grid (in this case from 1920x1080
pixels to 32x18 blocks), and count the proportion of black-to-white pixels in each grid cell.
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Threshold this ratio (say at 80%) and output the resulting image (Fig. 2c). White regions
indicate texture anomalies.

o Rescale the threshold texture image (Fig. 2¢) back to the original image dimensions
and display the segmentation results, marking the corresponding image areas as pavement
anomalies (Fig. 2d).
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Figure 1: Sample entropyfilt() calculations
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Figure 2: Sample texture segmentation and anomaly detection using entropy
filters.
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3.2 Patch Classification Using Support Vector Machines (SVMs)

The texture segmentation approach has been complimented with support vector machines
(SVMs) and applied to patch classification. SVMs are supervised machine learning models,
which identify patterns after taking labelled training data. An SVM is divided into two
main phases (training and testing), and it can be used efficiently for two-group
classification problems such as the presented research study (“patch” vs. “no-patch”
classes).

The images classified as containing a pavement anomaly by the previous procedure,
are used by another algorithm, which divides them between those that include the
pavement distress type of patch and those that do not; saving a significant amount of time
since the new algorithm has a smaller number of frames to process. A multiclass
classification algorithm can be developed in future work to categorise even more forms of
pavement distress, utilizing the frames characterised as including a pavement anomaly by
the aforementioned algorithm. The key steps of the presented algorithm (Hadjidemetriou
et al. 2016) are presented in Fig. 3 for both the training and testing stages. The SVM
training phase begins with transforming collected pavement video frames into grayscale
images. The presented system uses only one SVM, which is trained by labelled data
(ground truth) and feature vectors.

The ground truth is entered in the algorithm given data regarding the pixels of each
frame which are part of a pavement patch. Each feature vector is generated, and
subsequently the SVM is trained, extracting information from non-overlapped areas
within the frame, whose size is 20x20 pixels in width and height. The selection of blocks
size is based on usual image resolutions, whose dimensions are multiples of 20 (e.g.
640x480), so that blocks would cover the whole image. A number of block sizes, which
fulfil this criterion (e.g. 10x10), have been tested and the use of a trial and error technique
designates our final district size (20x20). One should also note that blocks which are
comprised of weighty proportions of both patch and non-patch areas (i.e. the patch area is
more than 5% and less than 95% of the block) are not used to facilitate the training of the
SVM and consequently its ability to distinguish “patch’” from “no-patch” areas. Every
feature vector, corresponding to a square block, is generated by the local intensity
histogram and two texture descriptors, named two-dimensional Discrete Cosine
Transform (DCT) and Gray-Level Co-occurrence Matrix (GLCM). DCT, which can be
used efficiently for purposes of pattern recognition, expresses a finite amount of data
points in respect of a weighted sum of cosine functions oscillating at diverse frequencies.
GLCM is a statistical system that examines the spatial relationship of pixels; while its
functions are able to designate the texture of a picture by creating a matrix, which contains
the estimated frequencies of the occurrence of pixel pairs with definite values and in a
specific spatial relationship. The presented method extracts data from this matrix to
calculate and then use the statistical measures of contrast, correlation, energy and
homogeneity.

The SVM training stage is followed by a testing phase (Fig. 3b). Its flow is similar with
the SVM training, starting with transforming RGB pavement frames into grayscale images
and dividing them into square blocks of 20x20 pixels. A feature vector is formed by the
local intensity histogram and the two texture descriptors for each square block. The
flowchart continues with the feature vector used by the SVM to classify each block of the
testing pavement picture in “patch” (1) or “no-patch” (0) categories. Fig. 4 depicts the
way patch areas are identified by the algorithm; where yellow-colored blocks represent
the “patch” class and blue-colored cells correspond to the “no patch” group.
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Figure 3: Training and testing stages of the proposed patch detection algorithm.
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Figure 4: Examples of processed images by the proposed algorithm.

Further, the morphological operation of closing is applied, to fill and eliminate blocks
which are classified differently than their surrounded blocks, by changing their label from
0 to 1 and vice versa. Finally, a trial and error technique is used to define the number of
connected “patch” blocks (340) which indicate the presence of a patch in an image.
Consequently, the algorithm, after the blocks classification, discriminates between the
images which include parts of patches and the frames which do not contain any patches
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parts (image classification). At this point, the difference between presence and detection
should be clarified. The former answers with a "yes" or a "no" the question of whether an
examined object occurs in an image, while the latter provides information regarding the
place of the object in the image. Despite the restriction of a range of algorithms to only
identifying the presence of a distress, while classifying images between damaged and
undamaged pavement, the proposed algorithm achieves both the presence and detection
of patches.

The method has been successfully field-tested on case-study roadways, using either a
GoPro camera or a smartphone camera. The vehicle moved with an average speed of 20
km/h. The external camera was a GoPro HERO3+ with a wide-angle lens. It was
positioned at a height of 1.00 m above the ground. In addition, a 13 MP Smartphone camera
(Samsung A5-2016) collected video frames of the roadway from within the vehicle. Table
1 presents the evaluation of the method performance in terms of accuracy, precision and
recall. The appearance of False Positives, which affect accuracy and precision, is mainly
caused by shadows and in some cases by oil spots. The performance is lower when data is
collected by the smartphone. This might be interpreted by the fact that frames are affected
by the cleanness of the window, captured objects outside of the area of interest and the
greater distance between camera and pavement, compared to the other scenario.

Table 1: The performance of blocks and images classification - (a) GoPro camera;
(b) smartphone camera.

Blocks Classification Images Classification Blocks Classification Images Classification
(GoPro camera) (smartphone camera)

Accuracy 829 %  Accuracy 825 % Accuracy 80.5%  Accuracy  80.0 %

Precision  65.6 %  Precision  77.8 % Precision  63.8%  Precision 754 %

Recall 92.0 % Recall 91.0 % Recall 89.4 % Recall 89.0 %

4 CONCLUSIONS

The paper presented a texture segmentation method with SVM classification for the
detection of roadway anomalies (herein focused on patch detection), exhibiting high
detection accuracy levels (above 80%). The performance results are slightly better when a
camera is positioned on the rear of car, compared to the placement of a smartphone camera
inside a vehicle. The proposed method is also characterized by some strong advantages
such as the identification of multiple patches in a single image or the detection of
proportions of patches when their entire area is not included in the image. Ongoing work
includes the accurate measurement of the pavement patch area, and the inclusion of other
roadway defects in the classification process.
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