



# Sentiment-Based Predictions of Housing Market Turning Points with Google Trends

Marian Alexander Dietzel ERES Istanbul 2015

# **Google Trends**

#### Google searches as a new dataset

- Search Volume Indices (SVI) derived from Google Trends (<a href="http://www.google.com/trends/">http://www.google.com/trends/</a>)
- Normalized values, scaled measured between 0 and 100
- The weekly data covers search queries conducted from Sunday to Saturday.
- Google Trends makes the newest weekly data available with an approximate two day delay.



# **Motivation and Theoretical Background**

#### **Google search interest as a new dataset**

- Every (free) Market is really only influenced by its Participants
- Every Action starts with Interest and is (usually) followed by an Information Collection Process
- The subsequent Action is what actually impacts on the Market and can be measured



# **Motivation and Theoretical Background**

#### **Motivation and Research Question**

Tsolacos, S. (2012), "The role of sentiment indicators for real estate market forecasting", Journal of European Real Estate Research, Vol. 5, No. 2, pp. 109-20.

- Shows that the behavior of real estate markets can be predicted with the help of sentiment indicators.
- Uses probability models i.e. Probit models

Can **probit-models** based on search volume data predict whether the housing **market is going to** rise or fall?

# **Preliminary Analysis**

## **Graphical Inspection in annual differences**



Case-Shiller House Price Index --- Google Real Estate Category

# **Research Design and Methodology**

#### Data

## **Housing Data:**

Case-Shiller 20-City House Price Index

## **Google Data:**

Search Volume Indices (SVI) derived from Google Trends (<a href="http://www.google.com/trends/">http://www.google.com/trends/</a>):

#### **Google search indices**

| Search Volume index                              | Regression Label | Category                 | Subcategory                          | Topic                       | individual search terms                                 |  |
|--------------------------------------------------|------------------|--------------------------|--------------------------------------|-----------------------------|---------------------------------------------------------|--|
| Real Estate Category                             | G_RE             | Real Estate              |                                      | -                           | -                                                       |  |
| Property Inspections & Appraisals<br>Subcategory | G_APR            | Real Estate              | Property Inspections<br>& Appraisals | -                           | -                                                       |  |
| Real Estate Agencies Subcategory                 | G_AG             | Real Estate              | Real Estate Agencies                 | -                           | -                                                       |  |
| Real Estate Listings Subcategory                 | G_LIST           | Real Estate              | Real Estate Listings                 | -                           | -                                                       |  |
| Keywords Housing Market                          | G_K_HM           | no category filter       |                                      |                             | housing market+real estate<br>market+real estate trends |  |
| Construction                                     | G_CONS           | Business &<br>Industrial | Construction & Maintenance           | -                           | -                                                       |  |
| Home (Building function)                         | G_HOM            | Real Estate              | -                                    | Topic: Building<br>Function | -                                                       |  |

# **Research Design and Methodology**

## **Optimum Lag Lengths**

## **Optimum lag lengths**

| Search Volume Index                           | Regression Label | Lag  | z-stat | p-value | AIC   | Relationship |  |
|-----------------------------------------------|------------------|------|--------|---------|-------|--------------|--|
| Real Estate Category                          | G_RE             | k=10 | 2.690  | 0.009   | 1.356 | -            |  |
| Property Inspections & Appraisals Subcategory | G_APR            | k=12 | 4.681  | 0.000   | 1.149 | _            |  |
| Real Estate Agencies Subcategory              | G_AG             | k=11 | 5.533  | 0.000   | 1.087 | _            |  |
| Real Estate Listings Subcategory              | G_LIST           | k=4  | -3.126 | 0.002   | 1.326 | +            |  |
| Keywords Housing Market                       | G_K_HM           | k=1  | 3.962  | 0.000   | 1.253 | -            |  |
| Construction                                  | G_CONS           | k=9  | 5.251  | 0.000   | 1.123 | -            |  |
| Home (Building function)                      | G_HOM            | k=4  | -3.536 | 0.001   | 1.301 | +            |  |

# **Research Design and Methodology**

#### **Model Selection Process**

#### **Selection Process:**

- 1) Start with given univariate model with a determined lag order
- 2) Every additional variable has to
  - a) decrease the AIC (Akaike Information Criterion) and
  - b) all variables have to remain statistically significant
- 3) The best performing model is chosen by the lowest AIC

| Variable                      | Coefficient | z-Statistic | Prob. |  |
|-------------------------------|-------------|-------------|-------|--|
| Constant                      | 0,788       | 2,999       | 0,003 |  |
| G_APR(-12)                    | 52,950      | 3,741       | 0,000 |  |
| G_LIST(-4)                    | -105,016    | -4,371      | 0,000 |  |
| G_CONS(-9)                    | 147,380     | 5,253       | 0,000 |  |
| McFadden R-squared            | 0,659       | _           |       |  |
| Akaike info criterion         | 0,544       | _           |       |  |
| Prob(LR statistic)            | 0,000       | _           |       |  |
| Observations                  | 112         | _           |       |  |
| Sample period: 2005M03 2014M0 | 06          |             |       |  |

## **Expectation-Prediction Evaluation**

## **Expectation-prediction evaluation**

|                           | <b>Estimated Equation</b> |       |       | Constant Probability |       |       |  |
|---------------------------|---------------------------|-------|-------|----------------------|-------|-------|--|
| Cut off point (C) = $0.5$ | Dep=0                     | Dep=1 | Total | Dep=0                | Dep=1 | Total |  |
| Probability (Dep=1)<=C    | 51                        | 6     | 57    | 57                   | 55    | 112   |  |
| Probability (Dep=1)>C     | 6                         | 49    | 55    | 0                    | 0     | 0     |  |
| Total                     | 57                        | 55    | 112   | 57                   | 55    | 112   |  |
| Correct                   | 51                        | 49    | 100   | 57                   | 0     | 57    |  |
| % Correct                 | 89.47                     | 89.09 | 89.29 | 100                  | 0     | 50.89 |  |
| % Incorrect               | 10.53                     | 10.91 | 10.71 | 0                    | 100   | 49.11 |  |
| Total Gain*               | -10.53                    | 89.09 | 38.39 |                      |       |       |  |
| Percent Gain**            | NA                        | 89.09 | 78.18 |                      |       |       |  |

<sup>\*</sup>Change in "% Correct" from default (constant probability) specification

<sup>\*\*</sup>Percent of incorrect (default) prediction corrected by equation

#### **In-sample Forecast**

In-sample Forecast

**Prediction accuracy: 89.3** %

Mean Squared Error (MSE): 7.0 %



#### **Out-of-sample Forecast**

Out-of-sample Forecast (one month ahead)



#### **Forecast Timeframe**



## **Conclusion**

#### **Main Findings**

- Google data would have reliably predicted turning points in the housing market (this includes the bust of the housing bubble in 2006)
- The probit prediction models predict correctly in about 90 % of the cases
- The presented model could be applied in practice as Google data are available with a time delay of only two days

## **Questions**

Sentiment-Based Commercial Real Estate Forecasting with Google Search Volume Data

Thank you for your attention! Remarks?