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Google Trends

Google searches as a new dataset

= Search Volume Indices (SVI) derived from Google Trends (http://www.google.com/trends/)

= Normalized values, scaled measured between 0 and 100
=  The weekly data covers search queries conducted from Sunday to Saturday.

=  Google Trends makes the newest weekly data available with an approximate two day delay.
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Motivation and Theoretical Background

Google search interest as a new dataset

=  Every (free) Market is really only influenced by its Participants
=  Every Action starts with Interest and is (usually) followed by an Information Collection Process

» The subsequent Action is what actually impacts on the Market and can be measured

. i' ------ 1
INTEREST » Information . | » ACTION I
: ision | mpact on Market
(initial) Collection Process | Decision | (subsequent) P
(IR -
Information :
Procurement through Impact becomes visible
Internet Research and can be measured




Motivation and Theoretical Background

Motivation and Research Question

Tsolacos, S. (2012), “The role of sentiment indicators for real estate market forecasting”, Journal of
European Real Estate Research, Vol. 5, No. 2, pp. 109-20.

Shows that the behavior of real estate markets can be predicted with the
help of sentiment indicators.

Uses probability models i.e. Probit models

Can probit-models based on search volume data predict whether the housing market is going to

rise or fall?




Preliminary Analysis

Graphical Inspection in annual differences
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Research Design and Methodology

Housing Data:
Case-Shiller 20-City House Price Index
Google Data:

Search Volume Indices (SVI) derived from Google Trends (http://www.google.com/trends/):

Google search indices

Search Volume index Regression Label Category Subcategory Topic individual search terms
Real Estate Category G_RE Real Estate
Property Inspections & Appraisals G.APR Real Estate Property. Inspections
Subcategory & Appraisals
Real Estate Agencies Subcategory G_AG Real Estate Real Estate Agencies
Real Estate Listings Subcategory G_LIST Real Estate Real Estate Listings
. ) housing market+real estate
K ds H Market G_K_HM t It
Eyworcs Housing Varke s no category filter market+real estate trends

Construction G_CONS Busmes.s & COI'ISITUCUOI‘I &

Industrial Maintenance
Home (Building function) G_HOM Real Estate Topic: Building

Function




Research Design and Methodology

Optimum Lag Lengths

Optimum lag lengths
Search Volume Index Regression Label Lag z-stat p-value AIC Relationship
Real Estate Category G_RE k=10 2.690 0.009 1.356 -
Property Inspections & Appraisals Subcategory G_APR k=12 4.681 0.000 1.149 -
Real Estate Agencies Subcategory G_AG k=11 5.533 0.000 1.087 -
Real Estate Listings Subcategory G_LIST k=4 -3.126 0.002 1.326 +
Keywords Housing Market G_K HM k=1 3.962 0.000 1.253 -
Construction G_CONS k=9 5.251 0.000 1.123 -
Home (Building function) G_HOM k=4 -3.536 0.001 1.301 +




Research Design and Methodology

Model Selection Process

Selection Process: 1) Start with given univariate model with a determined lag order
2) Every additional variable has to
a) decrease the AIC (Akaike Information Criterion) and
b) all variables have to remain statistically significant

3) The best performing model is chosen by the lowest AIC

Variable Coefficient z-Statistic Prob.
Constant 0788 2999 0,003
GAPR(-12) 52950 3,741 0,000
GLIST(-4)  -105016 - 4,371 0,000
GCONS(-9) 147,380 5253 0,000
McFaddenR-squared 0,659

Akaike info criterion 0,544

Prob(LRstatistic) 0,000

Observations 112
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Empirical Results

Expectation-Prediction Evaluation

Expectation-prediction evaluation

Estimated Equation Constant Probability
Cut off point (C) = 0.5 Dep=0 Dep=1 Total Dep=0 Dep=1 Total
Probability (Dep=1)<=C 51 6 57 57 55 112
Probability (Dep=1)>C 6 49 55 0 0 0
Total 57 55 112 57 55 112
Correct 51 49 100 57 0 _ .57
% Correct 89.47 89.09 §9_2_9_1I 100 0 II 50.89 -i
% Incorrect 10.53 10.91 10.71 0 100 49.11
Total Gain* -10.53 89.09 38.39
Percent Gain*™* NA 89.09 78.18

*Change in "% Correct" from default (constant probability) specification

**Percent of incorrect (default) prediction corrected by equation
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Empirical Results

In-sample Forecast

Prediction accuracy: 89.3 %

Mean Squared Error (MSE): 7.0 %

In-sample Forecast
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Empirical Results

Out-of-sample Forecast

Out-of-sample Forecast (one month ahead)

Prediction accuracy: 88.9 %

Mean Squared Error (MSE): 8.2 %
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Empirical Results

Forecast Timeframe

Forecast Timeframe
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Conclusion

Main Findings

" Google data would have reliably predicted turning points in the housing

market (this includes the bust of the housing bubble in 2006)
" The probit prediction models predict correctly in about 90 % of the cases

" The presented model could be applied in practice as Google data are

available with a time delay of only two days
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Questions

Sentiment-Based Commercial Real Estate Forecasting with Google Search Volume Data

Thank you for your attention! Remarks?
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