
 
 

Assessing the Performance of the Non-dominated Sorting Genetic Algorithm in 
Optimizing Construction Site Planning 

 
A. M. Khalafallah1  

 
1Department of Architectural & Manufacturing Sciences, Western Kentucky 
University, Bowling Green, KY 42101; PH (270) 745-5949; FAX (270) 745-5946; 
email: ahmed.khalafallah@wku.edu  
 

 
ABSTRACT 
 

Genetic algorithms are techniques inspired by the mechanics of natural 
selection and genetics. They adopt survival of the fittest and structured exchange of 
information as basic mechanisms for optimization, and they are deemed suitable for 
construction site planning. Among the commonly-used multi-objective genetic 
algorithms, the Non-dominated Sorting Genetic Algorithm stands out as a robust 
optimization algorithm for such type of construction optimization problems.  The 
main objective of this study is to investigate the performance of the algorithm under 
the alteration of optimization parameters. Specifically, the study investigates the 
performance of the algorithm under the variation of the population size, number of 
generations, type and value of cross-over probability, and mutation likelihood. This 
study should provide a better understanding of the behavior of the algorithm in 
solving site planning problems, and identify strategies that could help accelerate 
convergence toward optimal solutions. 
 
INTRODUCTION 
 

Designing a construction site layout is a process that entails identifying a 
location for every temporary facility with the objectives of (i) cutting on the cost of 
material handling, (ii) reducing travel times for equipment and personnel, and (iii) 
promoting safety and security on site (Khalafallah and El-Rayes 2008, Anumba and 
Bishop 1997, and Tommelein et al. 1992). Temporary facilities may include field 
offices, storage facilities, staging areas, fabrication yards, toilets, disposal areas, batch 
plants, among others (Khalafallah and El-Rayes 2008, Hegazy and Elbeltagi 1999, 
Yeh 1995). The process of designing an efficient layout for the construction site is 
crucial to the success of a construction project and could result in significant savings, 
if properly performed, or excessive risk exposure, if recklessly overlooked.  

Several studies investigated optimizing construction site layouts, using a 
variety of methodologies, including genetic algorithms (Khalafallah and El-Rayes 
2008, 2006a, 2006b; Mawdesley et al. 2002; Tawfik and Fernando 2001a, 2001b; and 
Harmanani et al. 2000), neural networks (Yeh 1995), simulation (Dawood and 
Marasini 2001), among others. Genetic algorithms have been proven to effectively 
facilitate the optimization of construction site layouts and improve the search process, 
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especially for problems characterized by a large search space (Khalafallah 2006). 
These algorithms (GAs) are inspired by the mechanics of natural selection and 
genetics. They adopt the survival of the fittest and the structured exchange of genetic 
materials among population members over successive generations as a basic 
mechanism for the search process (Goldberg 1989). GAs are considered effective 
tools for solving site layout optimization problems for several reasons, including (1) 
the usual non-continuity and large size of the search space; (2) the ease of 
representing solutions in the form of strings; and (3) the sufficiency of near-optimal 
solutions for this type of optimization problems (Khalafallah 2006). Multi-objective 
genetic algorithms are special types of GAs that are devised to optimize a number of 
objectives simultaneously. The Non-dominated Sorting Genetic Algorithm (NSGA, 
Deb et al. 2000) and its derivative (NSGA II) are among the most widely used multi-
objective genetic algorithms, and have been proven effective in optimizing site 
layouts that involve multiple optimization objectives, if these objective functions are 
not combined together using utility functions.  

Despite the robustness of the Non-dominated Sorting Genetic Algorithm in 
optimizing construction site layouts, the process of utilizing these algorithms is 
intricate and involves specifying several optimization parameters such as the 
population size, the number of generations, the type and value of cross-over 
probability, and the mutation probability. Improper specification of these parameters 
hinders the performance of the algorithm, and in many cases leads to improper 
convergence toward local maxima/minima. As such, the study of these parameters 
and their effects on optimization is deemed critical for an efficient and successful 
execution of these algorithms.  

The main objective of this study is to investigate the performance of the Non-
dominated Sorting Genetic Algorithm II (NSGA II) under the alteration of 
optimization parameters. Specifically, the study aims at evaluating the performance of 
the algorithm under the variation of the population size, number of generations, type 
and value of cross-over probability, and mutation likelihood. 
 
RESEARCH METHODOLOGY 
 

In order to investigate the performance of NSGA-II under the alteration of the 
optimization parameters, a benchmark optimization problem is selected. The problem 
first appeared in the literature in 2005 and involves multi-objective optimization of a 
construction site layout for a multistory garage building (El-Rayes and Khalafallah 
2005). The objectives of optimization were to maximize construction safety and 
minimize the travel costs of resources on site, while satisfying all the practical layout 
constraints. NSGA II is selected for multi-objective optimization as it can readily 
depict the tradeoff between these two conflicting objectives.  

The benchmark problem is studied under a set of scenarios that involve 
doubling the value for each optimization parameter, while fixing the values for all 
other parameters, in order to evaluate the effect of the parameter on optimization. For 
example, the population size was initially set to approximately the number of 
decision variables (20) and then doubled from one scenario to the next, while fixing 
the values of other parameters. The results for each set of scenarios are then plotted in 
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order to graphically compare them and identify the effect of altering the parameter's 
value on the performance the algorithm.  
 
OPTIMIZATION MODEL DEVELOPMENT  
 

A model for the aforementioned benchmark problem was developed using an 
MS Visual C++ compilation of the Non-dominated Sorting Genetic Algorithm II 
(NSGA II, Deb et al. 2000). In that compilation, NSGA II is the main driving engine 
for optimizing the two main objectives; maximizing construction safety and 
minimizing travel cost of resources, simultaneously. It is designed to search for and 
identify optimal solution(s) for all the decision variables; which in this case are the 
location coordinates of the temporary facilities. The input and output data is stored in 
a relational database, similar to the one described by Khalafallah (2006), in order to 
facilitate handling the results and controlling the optimization parameters.  
 
POPULATION SIZE EFFECT 
 

A first set of scenarios were designed in order to assess the behavior of the 
model under the alteration of the population size, as shown in Figure 1. In these 
scenarios, all the optimization parameters were set to fixed values except for the 
population size which was doubled from one scenario relative to the next. The 
parameters that were fixed are the number of generations (100 generations), the 
cross-over probability (0.5),  the type of cross-over (multiple point), and the mutation 
probability (0.001). In the initial run, the population size was set to a value of 20 
individuals (which is the approximate number of decision variables in this 
optimization problem) and then doubled with each run (50, 100, 200), as shown in 
Figure 1.  

As shown in Figure 1, doubling the population size helped significantly in 
improving the performance of the algorithm. The improvements were depicted by 
better-generated Pareto-optimal fronts (solution curves) that dominate the old fronts 
that represent lower number of generations. However, doubling the population size 
from 100 to 200 individuals did not result in a significant improvement in the results. 
It is also worth mentioning that an uninformed specification of optimization 
parameters could result in a very poor performance for the algorithm due to 
generating an initial population that is not in the ballpark of good solutions.   

The above observation indicates that selecting the population size in the range 
between approximately 5 – 10 times the number of decision variables might be the 
best specification for the population size parameter. Setting that parameter outside the 
aforementioned range caused an inefficient algorithm performance.  
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Figure 1. Effect of Doubling the Population Size on the Pareto-optimal Front 

 
 
NUMBER OF GENERATIONS EFFECT 
 

Several runs were performed, in a second set of scenarios, in order to assess 
the behavior of the model with the alteration of the number of generations. As shown 
in Figure 2, the number of generations was doubled in a series of successive runs, 
starting with 50 generations. The results showed that 200 generations (10 times the 
number of decision variables) were sufficient to achieve a reasonable Pareto-optimal 
front. This indicates that setting the number of generations to approximately 10 times 
the number of decision variables should improve the efficiency of optimization. 

 
Figure 2. Effect of Doubling the Number of Generations   
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It is also worth mentioning that doubling the number of generations from 200 
to 500 resulted in a better Pareto-optimal front and a better distribution range for the 
solutions. However, on the other hand, the computational cost increased linearly with 
increasing the number of generations. This additional computational cost is 
compensated for by achieving better solutions that provide less travel cost of 
resources. Thus, the additional computational cost is justified. 
 
EFFECT OF CROSS-OVER PROBABILITY 
 

In a third set of scenarios, the model was tested under various cross-over 
probabilities while fixing the population size to 50 individual solutions, the number 
of generations to 200 generations, the mutation probability to 0.001 and using 
multiple cross-over points as recommended in literature. Generally, increasing the 
cross-over probability would help to improve the final solutions and the final Pareto-
optimal front as more individuals are permitted to mate and reproduce, which 
improves the chances of reproducing individual solutions of better qualities. As 
shown in Figure 3, increasing the cross-over probability over 0.5 did not offer 
significant improvement in the generated Pareto-optimal fronts. 

 
Figure 3. Effect of Altering the Cross-over Probability on the Pareto-optimal 

Front 
 
CROSS-OVER TYPE & MODEL PERFORMANCE 
 

The model was also tested under two types of cross-over; single point and 
multiple points, as shown in Figure 4. With population size fixed to 50 individual 
solutions, 200 generations, 0.5 cross-over probability and 0.001 mutation probability, 
multiple point cross-over provided a better Pareto-optimal front and a better 
distribution range for the non-dominated optimal solutions. 
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Figure 4. Effect of Single and Multiple Cross-over Operators 

 
BEHAVIOR WITH VARIOUS MUTATION PROBABILITIES 
 

Lastly, the model was tested under various mutation probabilities, while fixing 
the population size to 50 individuals, the number of generations to 200, and using 
multiple points cross-over with a probability of 0.5. As shown in Figure 5, doubling 
the probability did not result in a significant improvement in the Pareto-optimal front. 
Thus selecting a mutation probability in the range between 0.001 and 0.01 would be 
appropriate, keeping in mind that it would not affect the solution significantly, as 
shown in Figure 5.  

 
Figure 5. Behavior with the Alteration of the Mutation Probability 
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Mutation is used in general, to overcome possible convergence of solution to 
a local minimum. The experiments showed that increasing the mutation rate does not 
always improve the results, e.g. increasing the mutation rate from 0.002 to 0.005 as 
illustrated in Figure 5. 
 
SUMMARY AND CONCLUSION 
 

This study investigated the performance of NSGA II under the alteration of 
optimization parameters, which include the population size, number of generations, 
type and value of cross-over probability, and mutation likelihood. An uninformed 
specification of such optimization parameters could result in a very poor performance 
for the algorithm. The main goal of the study is to provide guidelines on specifying 
such parameters in order to boost the chances of running an effective algorithm.  

A benchmark site layout optimization problem was selected from the literature 
to study the effects of such alterations of the optimization parameters on the quality 
of the Pareto-optimal front and distribution range of the non-dominated optimal 
solutions. The benchmark problem is studied under a set of scenarios that involve 
doubling the value for each optimization parameter, while fixing the values for all 
other parameters 

The results indicate that selecting (i) a population size in the range between 5 
– 10 times the number of decision variables, (ii) a number of generations in the 
ballpark of 10 times the number of decision variables, (iii) a multiple points crossover 
with a 0.5 probability, and (iv) a mutation probability in the range between 0.001 – 
0.1 might help accelerate the  convergence, improve the Pareto-optimal front, and 
expand the distribution range of the non-dominated optimal solutions.  

The study provided insight on the performance of the Non-dominated Sorting 
Genetic Algorithm (NSGA II) with the variation of optimization parameters. It 
identifies the expected ranges for these parameters that should help accelerate 
convergence toward the best Pareto-optimal front and solutions. This should prove 
useful to researchers and planners, alike, especially those who are interested in 
construction site layout optimization and closely–related problems.  
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