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ABSTRACT: Concrete reinforcing bars should be accurately placed in the positions shown on the construction 
drawings, adequately tied and supported before concrete is placed. These elements should be further secured 
against displacements within the tolerances recommended by project specifications. Ensuring compliance with 
contract documents and the building code applicable to the project under construction requires photographic 
documentation and close visual examination by field inspectors. Although inspection procedures are repetitive for 
every jobsite, the manual inspection methods are time-consuming and non-systematic. Moreover, the current 
practice of field inspectors walking into rebar cages and footings for close assessments can be a potential safety 
hazard on jobsites and can damage the integrity of the structure. To minimize the challenges of the current practice, 
this paper proposes a computer vision-based method for field inspection. In the proposed method, a field inspector 
can carefully walk around a rebar cage and take a complete collection of images from the underlying structure. 
Using a vision-based 3D reconstruction pipeline of Structure-from-Motion and Multi-view Stereo algorithms, a 
dense 3D point cloud model will be generated. Using an algorithm that maps and generates a density histogram of 
points, the locations and configuration of the rebars are identified. Finally, the spacings between rebars are 
calculated for field inspection. Experimental results on data collection, analysis, and visualization components of 
the proposed rebar inspection method is presented. These results show the promise of applying this low-cost 
approach in practice. 
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1. INTRODUCTION 

To ensure compliance with contract documents and building codes, inspection of concrete reinforcing bars (rebars) 
prior to pouring concrete is required for every concrete structure. These elements should be accurately placed in 
the positions shown on the construction drawings and secured before concrete is placed. Inspection of rebars is 
largely done by visual examination of the layout pattern, of measuring the spacing, and of counting rebars (CRSI 
2011). Considering the large size and the significant number of concrete placements for every project, this visual 
inspection - which is manually conducted by field inspectors - can be very time-consuming and inconsistent. In the 
current practice, a field inspector with a measuring tape walks around a rebar structure and often times pictures are 
taken to create a visual record of the as-built status. When measuring and counting rebars far away from the 
inspector, the numbers may be inaccurate and inconsistent due to physical limitations. Moreover, walking into 
rebar cages and climbing on column cages can be a potential safety hazard and can damage the integrity of the 
structure. The alternative method for inspecting large slabs is placing plywoods on the rebar structure as walking 
platforms. Although this method may be safer, the time and labor associated with moving the platforms are tedious. 
This can also damage the structural integrity and has a potential falling hazard as inspectors have to reach out and 
look down, standing on the edges of those plywoods. Figure 1 shows the current challenges associated with 
inspecting rebar structures. Since these visual inspections are repetitive for every jobsite, overcoming the current 
challenges discussed above can add value to the construction industry.  

Possible visual sensing techniques that can help overcome these challenges are laser scanning and vision-based 3D 
reconstruction methods (Golparvar-Fard et al. 2012b). These methods can accurately create 3D point cloud models 
that can help determine the locations of rebars as well as spacings. Although the former is proven to be accurate 
and used in many incidences for quality control (Tang et al. 2011, Tang et al. 2010, and Akinci et al. 2006), it 
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requires an expert for operation, is very expensive, and is not mobile. The latter, however, can provide a low-cost 
solution to the industry as 1) consumer-level cameras or camcorders can be used, 2) calibration is not required, and 
3) experts are not required for operation.  

 

Fig. 1: a) An inspector measuring rebar spacings (Golparvar-Fard et al. 2010); and b) the safety hazard created 
through the density of the rebar layers for the inspector 

This paper, therefore, presents a method for assessment of rebar spacing based on vision-based 3D point cloud 
models. In this approach, a 3D point cloud model is created from photos taken around a rebar structure. This model 
is then transformed to the site coordinate system using the coordinates of a set of target points placed on the 
structure prior to taking photos. An area selected for inspection is segmented from the site point cloud and the 
locations and configuration of rebars are automatically detected. Using coordinates of those detected rebars, 
spacings in all three directions (xyz in the Euclidean site coordinate system) are determined and represented. In the 
following sections, the paper presents 1) an overview of the current 3D reconstruction techniques that can be used 
for quality control, 2) research method using the techniques discussed in the previous section, 3) results of 
experiment, and 4) discussion on the contributions and practical benefits. 

2. AN OVERVIEW OF AS-BUILT MODELING TECHNIQUES 

2.1  Laser Scanner 

Today, laser scanners can provide very accurate 3D spatial data that can make them suitable for quality control 
related tasks. There have been many studies that illustrate the use of laser scanners in the construction industry 
(Tang et al. 2011, Tang et al. 2010, and Akinci et al. 2006). Despite of its proven accuracy, there are still several 
practical limitations that needs to be addressed. Laser scanning takes time to set up and requires experts for 
operation. The more dominant laser scanner used these days on jobsites are also not mobile. If used for inspecting 
rebar configurations, in order to minimize occlusions happening in the lower layers of rebars, the laser scanning 
should be performed several times at different locations from different viewpoints. The size and the way laser 
scanning is performed limits such repetitive activities. The costs associated with laser scanners also can limit their 
use, as the costs of scanners and of operating experts are still high. Other limitations of laser scanning are mixed 
pixel phenomenon, range errors for thin structures, range jumps at reflectance and color boundaries, and large 
errors due to specular reflection (Golparvar-Fard et al. 2012 & 2011, and Tang et al. 2010). 

2.2 Vision-based 3D Reconstruction 

The vision-based 3D reconstruction has been significantly advanced in the computer vision domain in the last 
decade. This advancement was partly due to improved network bandwidths and servers, computer hardware, and 
digital photography at low cost. All these improvements allowed the handling of large numbers of high resolution 
images and points extracted from those images efficiently. With the help of these hardware advancement, 
researchers have developed algorithms that automatically detect features and match corresponding features from 
an unordered set of overlapping photos, which many readers may know as panoramic stitching algorithms. One 
example of such algorithms is Scale Invariant Feature Transforms (SIFT) (Lowe 2004). This algorithm is later 
combined with Structure-from-Motion (SfM) technique, which recovers camera parameters and reconstruct a 
sparse 3D point cloud model from matched points (Snavely et al. 2006). These methods combined with Multi-view 
Stereo (MVS) algorithms such as (Furukawa and Ponce 2010) – which require camera calibration information for 
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3D reconstruction – can produce dense point cloud models. These algorithms in the order of which they are 
discussed became a pipeline for constructing 3D models using unordered images. Golparvar-Fard et al. (2012 and 
2011) and Saidi et al. (2011) has applied variants of this pipeline and generated as-built 3D point cloud models for 
progress monitoring and quality control purposes and have proven its accuracy compared to that of laser scanning 
techniques.  

3. RESEARCH OBJECTIVES AND METHOD 

The goal of this research is to prove the accuracy of the presented method and provide the industry with an 
automated method that can benefit from low-cost cameras and possibly replace the current practice (i.e., manually 
measuring and counting rebars and using expensive laser scanner). This research explores how the construction 
industry, specifically quality control practices, can benefit from low-cost computer vision techniques, such as 3D 
reconstruction using an unordered set of digital images.  

3.1 Setup and Data Collection 

Before starting the inspection, a set of surveying targets are created and placed on the underlying structure of the 
rebars (See Figure 3). The site coordinates of these target points are extracted using conventional surveying 
techniques and will later be used to transform the reconstructed point cloud model from local coordinates into the 
site coordinate system. Once these targets are placed, the field engineer will walk around the rebar structure and 
will collect a large number of photos. These images and the coordinates of the targets are input to the algorithms. 
Here, it is assumed that the size of the rebar is known based on project specifications and the inspection task is 
mainly focused on assessing the spacing among the rebars.   

3.2 Algorithms: 3D Reconstruction and Extraction of Rebar Locations 

Given a set of uncalibrated and unordered images of an underlying rebar structure, a dense 3D point cloud model 
can be generated using the pipeline, of the vision-based 3D reconstruction, discussed previously. This as-built 3D 
point cloud model – which has an unknown scale – needs to be transformed into the Euclidean site coordinate 
system. This similarity transformation has seven degrees-of-freedom (DOF): R for rotation (3 DOF), T for 
translational offset (3 DOF), and S for a uniform scale (1 DOF) and can be represented as: 
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where Xsite and Xlocal represent the coordinates of points in site and local coordinate systems respectively. By 
selecting three points from both local and site coordinate systems, these seven unknowns can be calculated. 
Because the coordinates of these points are manually collected, there could be potential errors when transforming. 
Particularly there could be a user selection error due to the difficulty of choosing points with the naked eyes from 
the reconstructed point cloud model. Moreover choosing a minimum number of points that are relatively close to 
each other may not best represent the entirety of the point cloud for calculating the transformation. This is due to 
potential amplification when scaled up the entire model. Taking these into consideration, more target points at 
longer distances from each other could be selected to minimize the registration error. This can be represented in 
form of minimization of the sum of the squared errors as follows: 
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where Ψsite,i and Ψlocal,i represent the coordinates of the targets in site and local coordinate systems respectively. To 
solve this equation, similar to Golparvar-Fard et al. (2009), Horn’s (1987) closed-form solution to the least square 
problem of absolute orientation is used. Once the similarity transformation is calculated, using Eq. 1, the point 
cloud is transformed into the site coordinate system. To extract the locations of the rebar, one important assumption 
can be made based on the typical characteristics of rebar structures: rebars are mainly oriented in two orthogonal 
directions. Based on this assumption, similar to Saidi et al. (2011), the following steps are conducted to 
automatically extract the potential locations of the rebar: After the region of interest for inspection is segmented 
from the point cloud model, all the points are projected onto the Z-axis (vertical) and a density histogram of those 
points is generated. This histogram indicates the locations of each rebar layer in the Z direction (see Figure 5a). 
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Next, the point cloud in each separated layer is quantized into smaller volumes of subspaces (voxels) wherein for 
each voxel, it is assumed that the orientation of the rebar layer stays constant. For each voxel, all the points are 
projected onto the X and Y axes independently and density histograms representing the occupancy density of points 
along each axis are generated. For each histogram, the maximum peaks which represent the centerlines of rebar are 
identified. Here, a point x in the histogram is considered a maximum peak if it simply has the maximal value 
compared in the close neighborhood of the point. Once the locations of rebars for each voxel are identified, they 
are connected to form the entirety of the model and the center-to-center spacing between two adjacent rebars can 
be calculated. Figure 2 illustrates the process model for this method. 

 

Fig. 2: The process model for the proposed method. 

4. EXPERIMENT 

4.1 Data Collection and Setup 

The data for this research was acquired from an experiment conducted at the National Institute of Standards and 
Technology (NIST)’s Intelligent and Automated Construction Job Site (IACJS) testbed. The reconfigurable rebar 
cage was fabricated as a mockup of a typical type of rebar cage. The epoxy-coated #6 rebars are spaced at 15.2 cm 
and the cage consists of two layers of rebars, separated by approximately 30.5 cm. Each layer consists of thirteen 
3.66 m long rebars laid on top of twenty-two 15.2 cm long rebars. To complicate the problem and embrace the real 
world challenges, three pipes are inserted in between the two layers, as can be seen in Figure 3. To minimize the 
registration error, fifteen targets were placed on the rebars as the control points. The global coordinates of these 
targets in the site coordinate system were retrieved using an Indoor Global Positioning System (iGPS) instrument. 
These coordinates were later used when transforming the point cloud to the site coordinate system. The iGPS 
system installed in the IACJS Testbed has a 3D position uncertainty of ± 0.250 mm and a maximum range between 
a receiver/transmitter pair of 40 m. 

Photos were taken with a commercially available digital single lens reflex camera (DSLR). The pictures are 
originally taken with the spatial resolution of approximately 21.1 megapixels. Then, they were downsampled to 
7.6 megapixels to match the common spatial resolution for the cameras in the recent smartphones. About 850 
images were taken - later subsampled into smaller numbers of images. To minimize visual occlusion in the lower 
layer, a field engineer walked around the cage and took about one image per linear foot. To capture the detailed 
images of the center of the cage, about 50 to 70 images were taken from the top. See Figure 3 for examples of 
images of the cage and targets.  

Fig. 3: The images of the rebar cage and targets used for 3D reconstruction. 

 

4.2 Sensitivity Analysis and Discussion on the Experimental Results 

4.2.1 3D Point Cloud Modeling  
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To test sensitivity to the number of images used for reconstruction, a subset of 100, 150, 200, and 250 images were 
randomly chosen. To ensure that these images were being evenly chosen throughout the structure, the structure was 
divided into several subareas in x-y plane. For each subarea, the visibility of points from cameras was calculated 
based on back-projection of each point into all cameras and checking the visibility constraints with respect to 
camera’s field of view. This information was available as part of the outcome of the SfM algorithm. Then cameras 
based on their contribution to the overall 3D reconstruction were uniformly subsampled. This approach also 
coincided with the data collection method of a field engineer walking around the structure taking photos. For each 
subset of images, a 3D point cloud model was generated using the pipeline of the 3D reconstruction algorithm as 
discussed previously. These models were trimmed for the inspection stage. Figure 4 and Table 1 show the 
relationship between the density and completeness of these models with respect to the number of images used.  

Fig. 4: 3D point cloud models from a) 250, b) 200, c) 150, and d) 100 images 

Table 1: Number of points generated from each sample 
# of Images 250 200 150 100 
Density of the point cloud 13,320,977 10,696,247 11,554,036 1,046,101 

 

4.2.2 Extracting Rebar Locations from Density Histogram 

All the points in the reconstructed models were projected onto the Z-axis perpendicular to the rebar plane (X-Y). 
The result is illustrated in Figure 5a. As can be easily observed, the two major peaks in red boxes indicate the 
locations of the top and bottom rebar layers in the Z-axis. The top and bottom layers consist of two layers of rebars 
each – longitudinal and transverse rebars and the two local peaks within each box represent these two layers. Once 
the locations of each layer in Z -axis were determined, the points were projected onto the other axes and the density 
histograms were plotted. When projecting all the points, for instance, to X-axis, some information in the projected 
axis may be missing. For example, if one rebar was bent in a certain location, that bending will not be captured 
because the algorithm only shows a unique location for that section of the rebar which in this case is represented 
with the location with most points. To deal with this problem, as mentioned previously, the rebar cage was 
subdivided into voxels and the points in each voxel were projected for plotting the histograms, assuming that the 
rebars are rigid enough to be straight within the chosen range – 50 cm in this case (see Figure 6). Even if there is 
any physical damage (i.e. bent rebars), the location with most points will be relatively close to the actual location 
of the rebar within that small range. The shorter length can be used for finer detection of the locations but there is 
a risk of more points from instrument noise than points from rebars in some regions as the length decreases. For the 
given dataset, a length of 30 cm seemed to work. Figure 5b illustrates the density histogram of one voxel and 
Figure 6 illustrates how the cage was subdivided and analyzed. 
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Fig. 5: Examples of Density Histogram of Points Projected to (a) Z-axis and (b) to X-axis. 

The red dots in Figure 5 indicates the potential locations of the rebars and the unevenly spread dots in some areas 
may be an indication of the noise in the data. These red dots from the noise were ignored by comparing the possible 
rebar locations in one segment with the locations in the other segments. Because a rebar will be almost always 
straight within a short length (i.e. 50 cm) unless its configuration is significantly irregular, any outliers can be 
ignored. Lastly, the density histograms of the points projected onto the Z-axis for every 50 cm × 50 cm are plotted 
to capture more accurate locations of Z-coordinates throughout the structure. Figure 8 illustrates the intersections 
of the rebars and shows how the rebars are deflected towards the center of the rebar cage. Note that Z-axis is 
exaggerated for the illustration purpose.  

Fig. 6: Illustration of how the rebar cage is segmented: top view on left and 3D view on right. 

4.2.3 Validation  

A 3D point cloud model generated from a laser scanner was used for 1) validating the accuracy of the 3D  

Fig. 7: Superimposed point cloud models (red: vision-based reconstruction and black: laser scanning) 

reconstruction and 2) running the same algorithms with the laser scanned model to test which of those two 3D 
models provides a better result. The accuracy of 3D reconstruction was tested by Golparvar-Fard (2012b) and the 
registration error was less than 1 mm registration error when 15 targets were used by comparing it to a BIM model. 
For this reason, this research only tested the accuracy of the point cloud model by superimposing it into the point 
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cloud model of the laser scanner and visually examining the results of 3D reconstruction. As seen in Figure 7, the 
accuracy of the vision-based reconstruction looks promising.  

The extracted locations of the rebars are plotted in 2D (top view) and 3D and displayed in Figure 8 and 9, 
respectively. Figure 8a illustrates the results from the laser scanner and Figure 8b illustrates the results from the 
vision-based 3D reconstruction using 200 images. Because the laser scanning was performed once, it had limited 
visibility, which is why some of the rebars in the lower layer were not detected due to occlusions of the inserted 
pipes. On the other hand for the vision-based approach, every rebar was successfully detected as it used images 
taken from different perspectives which minimized the chance of occlusion. As the number of images decreased, 
the occlusions became apparent (see Figure 10). Notice the upper layer that is always free from occlusion and 
almost always detected all the rebars in all cases, whereas the lower layer with occlusions was very sensitive to the 
number of input images. More images meant less occlusion as more viewpoints became available. 

Fig. 8: Detected rebar layouts for laser scanner (top) and vision-based (bottom). 

Since the rebars are only supported around the edges of the cage by the formwork, there is deflection towards the 
center of the cage and this was also successfully captured as illustrated in Figure 9. Partial rebar spacing is given in 
Table 2 due to space constraint. The results look promising when compared to the actual spacing of 15.2 cm, 
considering that there could be small error in placement of the rebars into the cage. All the results for the 
vision-based reconstruction using 250 and 200 images were within the tolerance of 7.6 cm to 10.2 cm (3 in to4 in) 
defined by ACI 117 (CRSI 2011). Notice that the z-coordinate is determined and assigned for each 50cm×50cm 
subarea. This is acceptable since deflections are so small that it is even hard to see the actual deflections with eyes. 
The largest deflection (difference between the highest and the lowest z-coordinate) was 1.5cm. For more accurate 
distribution of z-coordinates, the size of the subarea can be decreased but not smaller than 30cm×30cm by the 
authors’ experience.  

a) Output of rebar detection algorithm from laser scanning point clouds: 1) upper & 2) lower layer 

b) Output of rebar detection algorithm from vision-based point clouds (200 images): 1) upper & 2) lower layer 

1) 2) 

1) 2) 
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Fig. 9: Plotted rebar intersections. 

 

 

Fig. 10: Output from vision-based reconstruction 

Table 2: Spacing output from the vision-based reconstruction using 200 images. First 13 results of the second line 
from the bottom in x-direction. 

Lower (cm) 15.6 14.4 15.6 15.6 14.4 15.6 16.8 15.6 14.4 15.6 15.6 14.4 15.6 14.4 

Upper (cm) 14.4 16.8 14.4 15.6 15.6 14.4 15.6 15.6 15.6 15.6 15.6 14.4 14.4 16.8 

 

This research can potentially be used in conjunction with the 4-dimensional augmented reality (D4AR) modeling 
which Golparvar-Fard (2012) has developed for progress monitoring. In that system, an as-built point cloud model 
is generated from images and superimposed with IFC-based Building Information Models (see Figure 11). A rebar 
structure in that point cloud model for progress monitoring can be segmented and inspected at the same time. With 
more photos for denser and accurate 3D reconstruction, this system can also perform quality control related tasks, 
such as checking rebar spacing.  

b) Output using 100 images: Upper layer on left & lower layer on right. 

a) Output using 150 images: Upper layer on left & lower layer on right. 
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Fig. 11: The cloud model superimposed with IFC-based BIM model via the D4AR 

5. CONCLUSION AND FUTURE RESEARCH 

This paper presented the vision-based field inspection of rebars for concrete slab structures. The results of this 
research show how digital images can provide the detailed information that can be used for quality control. The 
results also proves the accuracy of such information is even comparable to that of the laser scanning method. It 
was shown that this vision-based approach using the images yielded better results than using the laser scanner in 
the presence of occlusion. It was also shown that the number of images had a great impact on the quality of the 
3D reconstruction and therefore on the quality of the rebar detection. The results show that the vision-based 
approach using digital images can provide low-cost field inspection and has the potential to replace the current 
labor-intensive and unsafe visual examination, measuring and counting of each and every rebar. 

Inspecting more complex structures in an uncontrolled environment will be studied in future work. This study 
can also expand to inspecting lap slices, stirrups, and rebar cages with more irregular configuration. The 
geometry fitting into possible rebar locations shown by peaks in density histograms will be studied. This can 
improve the process of choosing inliers against possible outliers. This approach can detect lap splices as it will 
search for cylinders in a given range around each location of the peaks and can also differentiate between sizes 
of rebars by fitting different size cylinders. The main goal is to automate and expedite the whole inspection 
process, which eventually can eliminate idle time prior to pouring concrete. These are all being explored as part 
of an ongoing research project and results are forthcoming. 
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