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Summary
The mathematical models for optimisation of grillage-type foundations are presented. Minimising of
maximum in absolute value vertical reactive force, bending moment, and reaction-bending moment
together is sought employing methods of finite elements, analytical sensitivity analysis, and
mathematical programming. Present models and computer code are implemented in the software
MatrixFrame�. Solutions of a number of problems demonstrate the validity of proposed algorithms.

1. Introduction
All parts of buildings should be designed and built optimally and thrifty as much as the conditions
of safety and comfort allow. In the design of grillage-type foundations this simply means that,
firstly, the cross-section of grillage is uniform in all the structure, and secondly, piles supporting the
grillage are uniform over all structure, but are placed plausible, not at equal distances from each
other. In order to optimally utilise the steel framework of grillage, the bending moments should be
uniformly distributed over the structure or, at worst, maximum positive moments should match the
minimum ones. For the support reactions in piles, obviously, all reactions should be as small as
possible and uniform.
Thus, the design of economical grillage foundations inevitably is related with optimisation of initialC
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scheme.
The paper deals with the aforementioned problems. We tried to pose the optimisation problems, to
define the solution methods, etc, up to the introduction into commercial codes.

2. Statement of problem
The optimisation problem is stated as follows:
Minimise (over feasible shapes) maximum P (over structure and load cases)
 with   P   being the parameter to be optimised.
Two optimisation problems are to be examined: when parameter is maximum bending moment at
some points of structure, and maximum vertical reactive force at supports. The feasible shape of
structure is defined by the type of certain supports (unmoveable support, spring-support, or support
with a given displacement), the given number of different cross-sections and different materials in
the structure. During optimisation process new moveable supports may appear in the structure, the
old supports may merge, however the type of existing supports has to be retained. 
The problems should be solved in statics and in linear stage.
Clearly, both problems are highly non-linear. Our choice is to use robust and reliable methods: finite
element method for static analysis and linear mathematical programming for optimisation. Thus, the
problems have to be solved iteratively and are converted to a sequence of approximately linear
problems of an optimal re-design. In each iteration the current shape is changed to a better
neighbouring shape. The solution requires three steps:

�  finite element analysis
� sensitivity analysis with respect to the co-ordinates of supports
�  optimal re-design with linear programming .

Further, the minimum-maximum problem is converted to a pure minimum problem with constraints
by treating  Pmax  as unknown subject to constraints that Pmax  limits the magnitudes of parameter P
everywhere in the structure and for all load cases when design changes  it � are performed:

(1)

for the total structural space x. The comma here and below means the differentiation.
For computational reasons a length constraint    is also included:

 . (2)

Several possibilities exist in the choice of design parameters  ti  on which the structure shape
depends. Our choice is to use the most evident from the engineering point of view design
parameters: nodal co-ordinates of all (or a chosen set of) supports.

3. Optimisation technique
With reference to [1, 2] let us shortly describe the optimisation procedures.

Two absolute limits sets (maximum, nonnegative and minimum, nonpositive) on all design
co-ordinates status  T: Tmax and Tmin are led up according to existing design restrictions or other
considerations. In any case the design variable cannot exceed these limits. For the first solution step,
current design variables status  T = 0 . The absolute limits may differ from one design variable to
other, however the maximum absolute move limits must be positive, and  the minimum ones
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negative. Further, the move limits on the design variables alterations �T per one iteration are led up,
again maximum and minimum. These move limits may vary from one design variable to another
and have to be adjusted to the extent of non-linearity of problem so that Simplex' predictions on the
future behaviour of the structure do not differ remarkably from finite element solution. In general,
move limits should be gradually shrunk as the design approaches the optimum. The accuracy of the
approximation is required to be higher when we get close to the optimum because the gains are
small and can be swamped by approximation errors. After introduction of intermediate always
positive variables  �T+ and �T- such that :

 (3)

 (4)

 (5)

all necessary conditions to the Simplex procedure are satisfied. 
Finally, the problem formulation for mathematical programming is:

Minimise  Pmax

with constraints:

level of  P  everywhere in the structure � Pmax ,
design changes do not exceed move limits, and design status does not exceed absolute limit ;
length of model is constant .

Considering only the first derivatives in Taylor's expansion, the first constraints at the nodal
points of structure become

 (6)

or avoiding the inequality

 (7)

The second group of constraints in matrix notation for all design variables is:

,  (8)

while the third one is as follows:

(9)

� � �
+ minT T T =  +  .

� � � �
+ max minT T T   -  .

� � � �
+ max minT T T T� +  =  -  .

[ ] � �T  maxP T P 0, + P   -      ,

,[ ] [ ] [ ]+ min
T TP 1 ∆T P ∆T�

 max  , I    -   P  +  P   =  -    -  P   .

+ max min∆T ∆T ∆T ∆T� +    =   -   
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where the sum covers only the active elements, i.e. including the current design variable as a node
of element. In the first iteration   .

4. Finite element. Matrices for sensitivity analysis
Simple two-node beam element with 4 d.o.f.’s [3] has been implemented in analysis. Nodal d.o.f.’s
of element are:

  , (10)

wk and �k, k = i,j  being deflection and rotation, positive counter-clockwise, accordingly.
The interpolation functions can be found in [3].
Bending moments at nodes, positive when cause the “positive” layers of a finite element experience
tension, compile the element stress vector. Flexural rigidity and interpolation functions relates
moment to the deflection:

  . (11)

After the nodal displacements are obtained, the reactive forces are available according to:

 , (12)

K being the stiffness matrix.
Finite element can be loaded by nodal forces and moments, positive counter-clockwise, and by
concentrated loads, moments, distributed (of triangular shape) loadings inside the element.
Distributed loading is modified to the statically equivalent loads and moments acting at the end-
points of loading. Later on these components as well as all other internal concentrated loads and
moments are translated to the nodes of finite element according to general relations of finite element
method yielding nodal loads vector P.
As seen from (1), the sensitivity (i.e., derivatives with respect to nodal co-ordinates) of bending
moments and reactive forces is the must for optimisation.:

 , (13)

 . (14)

with superscript  a  standing for ensemble. 
The derivatives of nodal displacements are obtained by solution of general sensitivity analysis:

 . (15)

The procedure for derivative of element stiffness matrix from which matrix of ensemble is [K]a,xi ,
composed, is as follows: replace L with xj-xi, detect whether k is ith or jth node of an element, and
obtain [K],xi or [K],xj, respectively. Thus, only the element possessing node k renders non-zero
stiffness derivatives.
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Similar procedures are valid for derivatives of forces and reactions. Due to relatively simple
interpolation functions all sensitivity analysis is performed analytically with computer algebra.

5. Program
The finite element computational procedure, sensitivity analysis and optimal re-design via linear
programming form the programs kernel which is supplemented with pre- and post-processing
capabilities. Kernel is written in Fortran 90 while pre- and postprocessors in C++.
The main features of kernel are:

� the program is “one button click program”
� input is: lengths of beams composing grillage, data on joints of beams, data on
nonmovable supports, if those are led in the schema due to some considerations of program
user; characteristics of materials and cross-sections, loadings, allowables: support reaction,
deflection in beams, distance between adjacent supports
� output is: positions of supports, reactions in supports, bending moments in beams

The initial finite element mesh is prepared automatically, leading up nodes at support places, jumps
of material and cross-sections properties, etc. The main problem inherent to the use of linear
mathematical programming is that in the case of numerous supports Simplex inevitably leads to the
local minimum point. Our solution to this is to use quasi-optimal initial schema for optimisation
procedure. This part of kernel is most complex program which analyses loadings, geometry,
materials and renders trial supports placement schema for optimization. Later on finite element
mesh is generated, again automatically, pointing “master nodes” which are allowed to move over
the schema freely and adjusting their move limits to the level of problems nonlinearity. Number of
supports can be increased in optimisation process, if allowable reactions were not achieved.
Separate beams of grillage or separate parts of grillage may be optimised independently if program
user wishes.
Key in the optimisation of grillage is optimisation of a single beam. For the whole grillage the
“upper beams” which reside on the “lower beams” are distinguished. The beams-joints are
simulated simply as supports (for upper beams) or concentrated forces (for lower beams).
Sensitivity of optimised parameter in upper beam depends on the optimisation results of lower
beams, and vice versa, therefore grillage optimisation procedure is included into additional iteration
loop to achieve required accuracy.
Program has capabilities to minimise support reactions, bending moments in beams, or
reactions/bending moments together. The satisfactory merit function for the last problem was not
found; an engineering approach has been employed instead: program begins and proceeds with
optimisation of reactions until allowable reaction is achieved, then shifts to the minimisation of
moments. Provided allowable reaction is exceeded, backward shift occurs, etc.

6. Numerical examples
A number of numerical examples demonstrate the capabilities of proposed model. For the sake of
transparency optimisation examples of a single grillage beam are presented here. Two examples deal
with optimisation of vertical support reactions in foundations beam. The loadings in all examples
are chosen so that the obtained results would be simply comparable with in advance known optimal
shapes of beams. 
All data are given in the figures 1 – 2.
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Fig. 1. 1D beam with trapezoidal load

Fig. 2. 1D beam with trapezoidal and concentrated
loads

Example Nr.1 :
1D beam loaded with trapezoidal load.
Allowable support reaction  - 0.4.  Spring
value for support  – 8.0.  Optimisation
method  - supports reaction optimisation.
In case of 23 spring supports supports
reactions values of Rmax = 0.399, Rmin =
0.378  are reached.

Example Nr.2 :
1D beam loaded with trapezoidal and
concentrated loads. Allowable support
reaction  - 1. Spring value for support  –
8.0.  Optimisation method  - supports
reaction optimisation. In case of 9 spring
supports supports reactions values of Rmax
= 0.974, Rmin = 0.925  are reached.

7. Conclusions
Proposed methods deliver acceptable results. The main problem is, linear mathematical

programming in case of numerous design variables inevitably leads to the local minimum. Solution
to this is to start from near-optimal initial schema which is generated by special programs analysing
the loading conditions and given topology of grillage. Another alternatives are the nonlinear
programming, and global optimization methods. Research in these fields is in process.
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