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Fracture behavior of welded
steel bridge components

Khaled M. Mahmoud1

ABSTRACT  | This paper presents the investigation of fracture behavior of welded steel bridge

components.  The interaction between a macroscopic crack and continuously distrib-

uted microscopic damage in a power-law hardening material is studied by account-

ing for void accumulation in the vicinity of the crack-tip.  The damage is assumed to

be concentrated to a small circular zone centered at the crack-tip, where growth and

coalescence of microvoids are invoked.  A component, loaded in Mode-I under plane

strain condition, is considered.  The deformation theory of plasticity is employed to

obtain the stress, strain and displacement fields ahead of the tip of the crack, where

a damage variable, D, is introduced to describe the mechanical effect of distributed

microscopic damage.  Only isotropic damage is considered in this paper.  For monot-

onic loading, the external applied stress for small-scale and large-scale yielding so-

lutions is found to be proportional to a
0

-1/ (n+1), where a
0

 is half the initial crack length

and n is the strain-hardening exponent of the material.  This reduces to Griffith’s

classical result for elastic material.  For fatigue crack propagation under small-scale

yielding, the effects of initial crack size, final crack size and the cyclic stress level on

the service life of welded steel bridge components are assessed and found to be in

good agreement with Paris power-law for fatigue crack growth.

KEYWORDS  | fracture behavior, bridge components, damage mechanics, microvoids, Mode-I,

HRR singularity.

1 Introduction

Among the major concerns of bridge engineers is the

fracture behavior of steel bridge components.  Linear

elastic fracture mechanics is a well-established tool in

describing the fracture behavior of bridge structures,

[1].  Conventional fracture approach deals only with

the effect of a macroscopic crack in a defect free con-

tinuum.  However, in reality, both a macroscopic crack

and microscopic damage may exist simultaneously in a

bridge component.  Thus, the resulting load carrying

capacity will be lower than in the case with only a mac-

roscopic crack or with microscopic damage.  Contin-

uum damage mechanics describes the effect of

continuously distributed microscopic damage.  The

continuum damage theory was first conceived for

creep rupture studies, [2].  To investigate the interac-

tion between a macroscopic crack and microscopic

damage of a material with a nonlinear hardening

stress-strain relationship, a combination of the two

approaches has been considered in [3] and [4].  In the

present paper, this interaction is applied to describe the

fracture behavior of bridge steel.  A stationary crack

subjected to tensile loading (mode-I) under plane

strain conditions is considered.  Accurate determina-

tion of the stress, strain and displacement fields near

the crack-tip is of a paramount importance in the

development of sound fracture criteria.  For a power-
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law hardening plastic material, the crack-tip possesses

the Hutchinson-Rice-Rosengren (HRR) singularity,

[5] and [6].  

A damage variable, D, which represents the remaining

load bearing area of the cross-section, is introduced to

describe the mechanical effect of distributed micro-

scopic damage.  Damage is usually an anisotropic phe-

nomenon, however, only isotropic damage is

considered in this paper.  The assumption is quite rea-

sonable due to the isotropy of steel.  The one-dimen-

sional representation of damage, considered here, is

valid even with the “local approach to fracture.”  It

should be noted, however, that the onset of localized

deformation is not included in this paper.  The damage,

which is assumed proportional to the crack opening

displacement, is confined to a small zone centered at

the crack-tip.  In this zone, the HRR asymptotic solu-

tion is modified to include the effect of damage.  The

conditions that characterize crack growth under

monotonic and cyclic loadings are studied.

A brief summary of the basic mathematical equations

of the HRR field, modified to include the effect of

damage, is introduced.  The shape effect in the process

zone is thought to be of secondary order.  However,

guided by the results obtained by Mahmoud and Kas-

sir, [4], a circular damage-zone, centered at the crack-

tip is postulated.  The criterion for initiation of crack

instability for the small-scale yielding and large-scale

yielding solutions is developed.  The remotely applied

stress, F4 
, is found to be proportional to a

0

-1/ (n+1), where

a
0
 is half the initial crack length and n is the strain-

hardening exponent of the material.  This reduces to

Griffith's classical result for elastic material (n=1).

The application of the small-scale yielding solution to

assess fatigue crack propagation due to tensile cyclic

loading is also examined.  The variations of the nor-

malized crack length with the number of cycles

required for failure are graphically exhibited, for given

material parameters.  The effect of initial and final

crack size as well as the effect of cyclic stress level are

investigated and found to be in very good agreement

with Paris power-law for fatigue crack growth.    

2 Basic equations

With the assumed isotropic damage, the variable, D,

which describes the mechanical effect of damage is a

scalar defined in [2] as: 

D = A
void

 / A  =  1  -   (A
net

 /A) .................................. (1)

where A and A
net

 are the macroscopically observable

original and net cross-sectional areas respectively,

while A
void

 is the cross-sectional area occupied by

voids, 0 # D # 1.  It follows that the nominal stress, F,

and the actual stress, s, are related as:

F   =  s (1 - D) =   S  s .............................................. (2)

where S is the continuity function.  It is assumed that

the damage accumulation is concentrated in a small

zone centered at the crack-tip, and referred to as the

damage-zone.  For a strain-hardening material, obey-

ing a linear relation to the yield point (F
0 

, g
0
) and a

power-hardening law thereafter.  Thus, the strain is

related to the nominal stress, F, according to:

g = (g
0
  / F

0 
)  F                ,                F   <  F

0 
.......... (3a)

g = g
0
  (F / F

0 
)n              ,                 F  >  F

0
 ........... (3b)

where F
0
 and g

0
 are reference stress and strain, respectively, 

and n is the power hardening exponent.  The reference stress 

is a material parameter and may be considered as the yield 

stress. 

Inside the damage-zone, the measure of damage is

assumed to vary linearly with the crack opening dis-

placement, i.e. D = 8 u
y
, where 8 is a material damage

parameter and u
y
 is the displacement normal to the

crack plane.  u
y
 shouldn’t be confused with *

t
, the

crack-tip opening displacement (CTOD).  Within the

zone, the net stresses are assumed equal to the net yield

stress, s
0
.  In this study, the following approximation is

made: 
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S = (1 - D) = constant...............................................(4)

throughout the damage-zone.  With this approxima-

tion, the HRR asymptotic solution near the crack-tip

retains its classical singularity.  It follows, after some

algebraic manipulation, that the leading term of the

displacement components, u
r
 and u2, in terms of polar

coordinates (r,2) measured from the crack tip can be

expressed as:

u
r
 = g

0 
[ J / (g

0
Ss

0 
 I

n 
)]n/ (n+1)   r1/ (n+1)  Ø

r
 (2) ............... (5a)

u2 = g
0 
[ J / (g

0
Ss

0 
 I

n 
)]n/ (n+1)   r1/ (n+1)  Ø2 (2) ..............(5b)

where J is Rice's path independent integral, Ø
r
 (2) and

Ø2 (2) are angular functions of the variable 2, and I
n
 is

a constant of integration evaluated in [7] for different

values of the strain-hardening parameter, n.  For small-

scale yielding solution, J is related to the elastic stress-

intensity factor, K
I
 , by:

J = (1 - <2) K
I
 2 / E .....................................................(6)

where E is Young's modulus and < is Poisson's ratio.  u
y

The characteristic size, R, of the zone of dominance of

the HRR singularity field depends strongly on harden-

ing as demonstrated by Rice and Rosengren [6].  From

the expressions of the Mises equivalent shear stress, J,

and shear strain, (, the approximate distance from the

crack-tip to the elastic-plastic boundary R(2) is given

by [6]:

J  = J
0  

[R(2) / r]1 / (n+1)   ,    (  = (
0  

[R(2) / r]1 / (n+1) ....(7)

where R(2) = R(2;J,n) and J
0 
and (

0 
are yield stress and

yield strain in shear, respectively.  From equations (7),

one immediately sees that R(2) gives the shape of con-

stant equivalent strain lines in the immediate vicinity

of  the crack-tip and that R(2) can be interpreted as an

approximate indication of the distance from the crack-

tip to the elastic-plastic boundary.  

In this paper, the HRR dominance region is assumed to

represent the damage-zone, as within this region, plas-

tic strains prevail and outside the zone, the component

is predominantly elastic, considering small-scale

yielding.  For the fully-plastic condition, where the

plastic zone reaches across the entire uncracked liga-

ment, the validity zone ahead of the crack-tip is some

small fraction of the uncracked ligament.  In the case

of the center-cracked tensile configuration, there is a

much smaller zone of dominance, which becomes van-

ishingly small as n 64.  For light to medium hardening

(n .10), it was shown that the dominance zone is

given, roughly, by:  R . 0.01 b, where b is the length of

the uncracked ligament, [8].  This paper is basically

adhered to the small-scale yielding case in developing

the fatigue crack propagation.  However, for the onset

of crack initiation in the fully-plastic range, the size of

HRR dominance for the small-scale yielding, was con-

sidered for convenience and consistency of calcula-

tions.

Numerical solutions in small-scale yielding indicate

that the HRR singularity fields provide a fairly good

approximation out to distance ahead of the tip of

roughly, [9]:

R  =  (0.2 to 0.25) r
p

................................................. (8)

where r
p
 is the distance to the elastic-plastic boundary

for linear-elastic fracture mechanics.  According to

Hutchinson, for small-scale yielding, it is readily veri-

fied, using the following formulas: r
p
 = (1/3 B) (K/F

o
)2

, R =  0.25  r
p
 and J = (1 - <2) K2 / E, that the condition

for J-dominance, namely, R > 3*
t
,  is always satisfied,

where *
t
 is the crack-tip opening displacement.

Expressing r
p
 in terms of the J-integral, for plane strain,

yields:

r
p
  =  (1/3B) [ J / (F

0
)2 ] [ E / (1 - <2) ] ..................... (9)

Guided by the results of the anti-plane case, [4], the

damage-zone in this paper is postulated as a circle of
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radius (0.25 r
p
) centered at the crack-tip.  Hence, it fol-

lows that the radius of the damage-zone is given as:

C =  (1/ 12Bs
0
) (J / s

0
) [ E / (1 - <2) ] S-2..................(10)

It should be noted that the size of the damage-zone

given in equation (10) is not dependent on the strain-

hardening exponent for the small-scale yielding solu-

tion.  The effect of this independence will be addressed

in the discussion of numerical results of crack instabil-

ity criterion.

When the applied loading approaches the yield stress,

large-scale yielding solution prevails.  The displace-

ment fields predicted from the HRR theory are reason-

ably accurate, despite the large plastic strains at the

crack-tip [10].  The extension to large-scale yielding

involves using the fully-plastic solution of a finite

width panel containing a centered crack [11].

In the following, equations (1) through (10) are used to

describe the conditions of the initiation of growth of

the pre-existing crack due to monotonic loading and

crack growth under cyclic loading.

3 Criterion for the onset of crack 
extension

The accumulated damage in the material is confined to a

circular region, centered at the crack-tip, whose radius is

given by equation (10).  Inside the damage-zone, the ten-

sile stress is given in terms of the effective stress:

F
i
 = s [ 1 - 8u

i 
] ........................................................(11)

where u
i
 is the HRR displacement given by equations

(5a) and (5b), for i = r and i = 2, respectively.  In par-

ticular, equating the value of the exact tensile stress

given by equation (11) to the approximate stress, Ss, at

(r, B/4), with r set equal to C in equation (10), yields:

(1- S) = (8s
0
 / E) .[J / s

0
] S- [(n+2) / (n+1)] G(n)..............(12)

where,

G(n) = g
0

-1

 
.[ I

n 
]-n / (n+1)   [12 B (1 - <2)]-1/ (n+1)  

                       . [Ø
r
(B/4) + Ø2(B/4)] cos (B/4) ......... (13)

The measure of damage, D, is computed from the

crack-tip opening displacement, 2 u
r
(C, B/2), which

yields:

D = (8s
0
 / E) .[J / s

0
] S- [ (n+2) / (n+1) ] H(n) .................. (14)

where,

H(n) =  2. g
0

-1

 
. [ I

n 
]-n / (n+1)  [12 B (1 - <2)]  -1/ (n+1)  [Ø

r
(B/2)] .... (15)

The criterion for the onset of crack extension is estab-

lished by requiring D(C, B/2)  in equation (14) to

approach unity and using equation (12) to eliminate

the continuity function, S.  The result is:

(8s
0
 / E).[J / s

0
] = {1 - [G(n)/H(n)]}(n+2) / (n+1) / H(n)......(16)

In the remaining part of this section, equation (16) is

used to predict the onset of crack growth for external

loading characterized by the small-scale yielding and

the fully-plastic solution.

3.1 Small-scale Yielding Solution

For small-scale yielding, the J-integral is replaced by

the elastic stress-intensity factor, namely, J = (1 - <2) K
I

2 / E = B (1 - <2) F4
2  a

0
 /E.  Substituting in equation (16),

the following condition for the initiation of crack

growth is obtained:

(8s
0

 a
0
 / E ) .[B (1 - <2) g

0
 ] (F4 

/s
0
)2  = 

                       {1 - [G(n)/H(n)]}(n+2) /  (n+1) / H(n) ........ (17)

In order for small-scale yielding to be valid, (F4/s0
) has to be 

less  than about 0.5.  It is clear that equation (17) confirms 

Griffith's classical result, namely, F4 is proportional to a
0

-.5.  

The constant of proportionality in equation (17) is a material 

parameter.  Similar result was obtained for the small-scale 

yielding solution for the anti-plane mode case, [4].
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3.2 Large-scale Yielding Solution 

The extension to large-scale yielding involves using

the fully plastic solution for Rice's J-integral in equa-

tions (12) and (14).  It is realized that the damage-zone

extension in the fully plastic range will be much

smaller than that of the small-scale yielding.  However,

for simplicity of calculations, the damage-zone exten-

sion in large-scale yielding is assumed to be the same

as that postulated in the previous section for small-

scale yielding.  The fully plastic J for the damaged

material can be obtained along the same lines outlined

in [11].  For a crack of length 2a
0
, in an infinite strip of

width, 2W, subjected to a constant stress, F4, at the

remote boundary, under fully-plastic conditions, it can

be shown that:

J / s
0
  =   (s

0 
a

0 
/
 
E)  (F4 

/s
0
)n+1 (b/w) h

1
 (n) S-n ..........(18)

where S is given in equation (12) and h
1
 (n) is a func-

tion of the strain-hardening exponent and geometry,

whose numerical values, for (a/W) = 0.125, are given

in Table 1.

Upon eliminating S from equation (12) using (18), it

follows that the onset of crack growth ensues when:

(8s
0 
a

0 
/
 
E) (F

4 
/s

0
) (n+1) [g

0
 (b/w) h

1
 (n) ] =  

                      {1 - [G(n)/H(n)]}m  / H(n) .................(19)

where the superscript, m, is given by: m = ( n2+2n+2) /

(n+1).

Equation (19) shows that F4 
is proportional to a

0

-1/ (n+1),

which is identical to the result obtained by Mahmoud

and Kassir for the anti-plane crack, [4].  Equation (19)

is valid for values of F4 
/s

0
 in the range 0.5 to 1.0.  The

variation of the critical loads with crack length pre-

dicted by equations (17) and (19) are shown in Figure

1, at a value of 8 = 106 in-1 (39,370 mm-1).  Equation

(17) reveals the variation of the critical stress with

crack length for F4 
/s

0
 < 1/2, while equation (19) exhib-

its the behavior for  1/2 < F4 
/s

0
 < 1.0.  In the small-scale

yielding domain, the critical stress is proportional to

the square root of the crack length and the strain-hard-

ening of the material plays insignificant role.  In con-

trast, the influence of the strain-hardening exponent is

demonstrated in the fully plastic range.  It is clear from

Figure 1 that the external load required to cause insta-

bility decreases with increasing values of the harden-

ing exponent n.  As the crack length increases, lower

external load is required to cause failure.  Another

noteworthy feature about the developed criterion is the

effect of Poisson's ratio, <, on the crack extension.  Fig-

ure 2 exhibits the instability curve corresponding to a

strain-hardening exponent, n = 20, for two different

values of Poisson's ratio, namely, < = 0.0 and < = 0.5.

The influence of Poisson's ratio, <, on the fully-plastic

solution is by no means significant.  However, Figure 2

shows a more pronounced influence of < on the small-

scale yielding range of the curve.  It is also clear from

Table 1. Numerical values of h1 (n) in equation (18)

      n             h1 (n)  

      1     2.8

      2    3.61

      3    4.06

      5    4.35

      7    4.33

     10    4.02

     13    3.56

     16    3.06

     20    2.46

Figure 1. Variation of the applied stress, , with 

crack lenth, a0.

σ∞/S0
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the figure that the higher value of Poisson's ratio,

namely, < = 0.5 corresponds to a higher value of the

crack length at instability compared with < = 0.0, for

the same load ratio and (hypothetically) the same

material parameter.  This result is expected, as higher

value of Poisson's ratio reflects higher ductility of the

material and larger capacity to sustain plastic deforma-

tion imposed by the damage process.  

4 Fatigue crack propagation

Fatigue crack propagation under cyclic tensile loading

is studied in this section.  Each loading cycle contains

an increase varying from 0 to F4, which imposes an

instantaneous damage increment, )D, proportional to

the normal displacement, within the damage-zone.  No

damage is caused upon loading from F4 to 0, to comply

with the deformation theory.  No hold time effects are

considered in the present analysis.  Interest is, rather,

focused on the effect of load changes.  Analysis is

adhered to the small-scale yielding solution.  In the fol-

lowing calculations, r is set equal to C given in equa-

tion (10).  Denoting by D(r, B/2), the damage at a point

(r, B/2) from the crack_tip, it follows that after N load

cycles:

D(C, B/2; N)  =  D(C, B/2: –1)  +  0. u
r 
(C, B/2; N) .... (20)

where 0 is a material damage parameter and D(C, B/2

; N) is a function  of the continuity function, S.

To obtain a value of the continuity function, S, the

exact and the approximate stresses are set equal at (C,

B/4), i.e.

S(N)  =  1  -   D(C, B/4 ; N)....................................(21)

where now D(C, B/4 ; N) is given by:

D(C, B/4 ; N) = 

D(C, B/4 ;N-1) + 0.[u
r 
(C, B/4 ;N) + u2 

(C, B/4 ;N)] (1/ / 2) ...... (22)

Combining equations (5), (13), (21), and (22), one can

write:

S(N)  =  1 - (0s
0

 a
0
 / E ) .[B (1 - <2) g

0
 ]n / (n+1)  (F4/s0

)2  G(n) 

      .{[S- [(n+2) / (n+1)] (N-1)] + [S- [(n+2) / (n+1)] (N)]} ...... (23)

For N = 0, there is no damage and S=1, while corre-

sponding to N = 1, there is instantaneous damage accu-

mulated in the damage-zone, whereby, the extent of the

zone and the crack opening displacement within the

zone can be evaluated.  The extent of the damage-zone

ahead of the crack-tip is obtained from equation (10)

as:

C(N) =  (1/12B) (K
I
 /S(N) s

0
)2 ............................... (24)

For each cycle of loading, u
r 
(C, B/2), u

r 
(C, B/4), u2 

(C,

B/4),S(N) and C(N), are calculated using equations (5)

and (21)-(24).  

The new crack length, a, which is found from the con-

dition:

D(a
N
  , N)  =  1........................................................ (25)

is incrementally computed from:

a
N
   =   a

0
  +  da

N
..................................................... (26)

where:

da
N
  =  [1 - {1/ D(r, B/2;N)}]  C(N)........................ (27)

Using the new crack length given by equations (26)

and (27), the iterative process can be repeated to obtain

the final values of a(N), C(N), w(r, 2 ;N), D(r, 2 ;N)

and S(N) at which  instability is reached, i.e., the criti-

cal crack length to cause crack instability is reached.

The influence of the strain-hardening exponent has

been numerically studied to demonstrate the effect of

different material parameters on crack propagation due

to the fatigue process. Figures 3 and 4 exhibit the influ-

ence of different stress levels on the loading cycles for

different values of the strain-hardening exponent.  It is
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clear from these figures that the number of load cycles

required to cause failure decreases with increasing val-

ues of the strain-hardening exponent and the applied

stress.  Figure 5 displays the variation of the normal-

ized crack length, a(N) / a
0
, and the number of cycles

required for failure under different values of the mate-

rial parameters, at constant stress level and n = 2.  For

decreasing value of the material parameter, which indi-

cates reduced level of damage, the number of load

cycles required for failure increases.  Figure 6 shows

the relationship between the normalized length of the

crack, a(N) / a
0
, and the number of loading cycles cor-

responding to different levels of the applied load at a

constant material parameter and n = 2.  As expected:

the number of load cycles required to cause failure

decreases for higher values of the applied load.  It is

noted that Figures 3 through 6, typically, display an

incubation period, within which damage accumulates

without crack growth, ending with onset of crack growth

that triggers a growth period, which is terminated by

failure at a certain number of cycles of loading.

Figure 2. Influence of Poisson’s ratio on crack 
extension for n=20.

Figure 3. Crack growth due to cyclic loading at = 9 

ksi (62 Mpa) and η=100 in-1 (4 mm-1). 

σ∞

Figure 4. Strain hardening variation with crack growth  

at = 18 ksi (124 Mpa) and η=100 in-1 (4 mm-1). 

Figure 5. Material damage parameter’s influence on 

fatigue crack growth at = 9 ksi (62 Mpa), for n=2.

Figure 6. Influence of external stress ratio, ,on 

fatigue crack  growth at η=100 in-1 (4 mm-1) for n=2.

σ∞

σ∞

σ∞/S0
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In the remaining of this section, the effect of initial and

final crack size in addition to the effect of cyclic stress

level on the fatigue life of a welded steel bridge com-

ponent are demonstrated.  

4.1 Effect of Initial Crack Size

To illustrate the effect of initial crack size, the remain-

ing fatigue life, N = N
f 
- N

i 
, as predicted from the dam-

age model is plotted versus initial crack size in Figure

7.  As shown in the figure, if the initial crack size is

increased from 0.05 inch (1.27 mm) to 0.1 inch (2.54

mm), the remaining life reduces by about 50% of the

life for a 0.05-inch (1.27 mm) initial crack.  Then, for

instance, if the weld quality were such that the crack

size that cannot be detected is 0.1-inch (2.54 mm)

instead of .05-inch (1.27 mm), half of the fatigue life

would be consumed, by allowing larger initial cracks

to remain in the structure.  If the final crack size is

taken to be the same and equal to 1 inch (25.4 mm),

one can see that a threefold increase in initial crack

size from 0.1-inch (2.54 mm) to 0.3-inch (7.62 mm)

reduces the remaining life to about 25%.  This demon-

strates the strong effect of initial crack size on bridge

life and emphasizes the importance of taking into

account the quality of initial crack size in the predic-

tion of fatigue life of welded bridges subjected to

cyclic loading.

4.2 Effect of Final Crack Size

The influence of final crack size on fatigue life is dem-

onstrated by plotting the remaining fatigue life versus

final crack size using an initial crack size of 0.15 inch

(3.81 mm), as shown in Figure 8.  In this figure, a final

crack size ranging from one inch (25.4 mm), which is

used for Figure 7, to 5 inches (127 mm) has been used.

Only marginal increases in remaining life are obtained

for quite substantial changes in final crack size.  For

instance, an increase in final crack size from one inch

(25.4 mm) to two inches (50.8 mm) results in a mere

7% increase in remaining life and an increase from one

inch (25.4 mm) to 5 inches (127 mm) yields only about

12% in remaining fatigue life.  This illustrates that the

final crack size has little effect on bridge life when the

controlling failure mechanism is fatigue.

4.3 Effect of Cyclic Stress Level

Using Paris power law, the rate of fatigue crack

growth, da/dN, is given by:

da/dN = C
p
 ()K) p................................................... (28)

where )K is the stress intensity factor range, and C
p

and p are material parameters.  A growth exponent, p,

of four is appropriate for most welded steel structures,

Figure 7. Effect of initial crack size, a0, on remaining 
fatigue life.

Figure 8. Effect of final crack size, af, on remaining 
fatigue life.

IT-AEC 1-3.book  Page 246  Monday, October 27, 2003  2:15 PM



Fracture behavior of welded steel bridge components  |

International Journal of IT in Architecture, Engineering and Construction

Volune 1 / Issue 3 / September 2003.  © Millpress 247

[12].  The stress intensity factor range )K in this case

is )K = F4 /Ba.  Then, the number of cycles required

to cause failure, N
f
, may, therefore, be expressed as:

N
f
 =   [a

i
]1 - p/2  F4

- p   / [1 - p/2] [C
p
 B p/2] ..................(29)

From this equation, one observes that N
f
 " F4

- p .  With

p = 4, Figure 9 predicts that N
f
 " F4

- 3.9 which is in very

good agreement with the prediction of equation (29).

One more noteworthy feature of Figure 9 is that differ-

ent values of the material damage parameter, 0, could

be looked at as indicator of the category of the weld

detail, i.e. Category D, E, E‘ or F as defined by the

AASHTO Specifications, with the worst case corre-

sponding to the highest value of 0 reflecting severer

state of damage.  It is also noted that equation (29) pre-

dicts the relation: N
f
 " a

i

- 1, which is in good agreement

with the results shown in Figure 10, for different values

of the external stress, F4.         

Using equation (29), and assuming that the cyclic

stress is reduced by a factor of two, the initial crack

size that would give the same predicted service life is

given by:

a
i (0.5 F4)

 =  a
i (F4)

  [16 a
f
 / ( a

f
 + 15 a

i 
)].......................(30)

Since 0 < a
i 
 < a

f 
, numerical values of the above for-

mula range between one and 16.  For high cycle fatigue

in welded bridges, a
f
 >>a

i
.  Thus, a 16-fold increase in

initial crack size can result if stresses are reduced by a

factor of two.  The same 16-fold increase in number of

cycles required to cause failure is also predicted by

equation (20), when the stress is reduced by a factor of

two.  This is in a very good agreement with the average

15.5-fold increase, predicted by the damage model as

shown in Figures 3 and 4.

5 Conclusions

A continuum damage model is used to study fracture

behavior of steel bridge components subjected to

Mode-I loading.  The model is based on interaction

between a macroscopic crack and the uniformly dis-

tributed damage ahead of its tip.  A damage parameter

is incorporated in the HRR asymptotic solution to

describe the stress and displacement fields in the vicin-

ity of the crack-tip for a power-law hardening material.

For monotonic loading, the external stress is shown to

be proportional to a
0

-1/ (n+1), which reduces to Griffith’s

classical result for elastic material.  For fatigue crack

growth, it is shown that the initial crack size has a

strong influence on bridge life and that the initial weld

quality is of a paramount importance in the prediction

of fatigue life of welded bridges subjected to cyclic

loading.  On the other hand, final crack size has very

little influence on total bridge life.  It is also found that

if the applied stress is reduced by a factor of two, a

15.5-fold increase in number of cycles elapsed to fail-

ure is gained, which is in a good agreement with the

Figure 9. Number of cycles to failure Nf, versus external 

stress ratio, .σ∞/S0

Figure 10. Number of cycles to failure Nf, versus 
material damage parameter, η.
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16-fold increase predicted by Paris power-law for

fatigue crack growth.  Finally, the main conclusion of

this paper is that the proposed continuum damage

model describes the fracture behavior of steel bridge

components very well and seems as a promising tool in

the prediction of bridge life. 
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Appendix:   Notation

The following symbols are used in this paper:

A = original cross-sectional area.

A
net

= net cross-sectional area.

A
void

= cross-sectional area occupied by voids.  

a = crack length.

a
0

= initial crack length.

a(N) = crack length at load cycle N.

a(t) = crack length at time t.

b = length of uncracked ligament.

C = plastic zone extension ahead of the crack-tip.

C
P

= material parameter.

D = damage variable. 

E = Young's modulus of elasticity.

G(n) = strain-hardening dependent constant at 2 =

B/4.

H(n) = strain-hardening dependent constant at 2 =

B/2.

h
1
(n) = strain-hardening dependent function.   

I
n

= integration constant for Mode-I. 

J = Rice's contour integral.

K
I

= Mode-I elastic stress-intensity factor. 

m = strain-hardening dependent constant.

n = strain-hardening exponent of the material.

p = material parameter.

N = number of loading cycles.

N
f

= number of loading cycles required for fail-

ure.

N
i

= number of loading cycles required for the

onset of crack growth.

R =  radius of the zone of dominance of the HRR

field.

r
p

= distance to the elastic-plastic boundary.

s = effective stress.

s
0

= effective yield stress of the material.

u = in-plane displacement vector.

W = width of a structural strip subject to in-plane

loading.

x,y,z = cartesian coordinates.

( = shear strain.

(
0

= yield strain in shear.

)D = damage increment.

)K = stress intensity factor range.

*
t
 = crack-tip opening displacement (CTOD).

0 = damage parameter for cyclic loading.

2 = angle measured from the crack-tip.

8 = damage parameter for monotonic loading.

< = Poisson's ratio of elastic contraction.

F
ij

= stress tensor.

F
0

= yield stress in tension.

F4 = remotely applied in-plane tensile stress.

J = shear stress.

J
0

= yield stress in shear. 

S = continuity function of damage.

g
0

= yield strain in tension.

Ø
r
(2) = angular function of the variable 2, 

   with respect to r.

Ø
r
(2) = angular function of the variable 2, 

   with respect to 2.
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