CZnstruction Informatics Digital Library http://itc.scix.r*et/

paper w78-1991-10.content

IMPLEMENTATION OF OBJECT ORIENTED PRODUCT MODEL
APPLICATIONS

Matti Hannus

VTT, Laboratory of Structural Engineering, Kemistintie 3, SF-02150 Espoo, Finland

Abstract

The paper describes implementation aspects of object oriented applications using
different software tools such as a CAD-system, a relational data base management
system and an object oriented programming language. The different implementations
are based on a common generic product model and are integrated by means of
neutral file transfer. The modules make up a toolbox from which various specific
applications can be derived by adding application specific subclasses. The described
development aims to provide steps along an evolutionary path from the dominating
design tools of today towards the envisioned object oriented systems of tomorrow.

OBJECT BROWSER

xd.

CAD- SYSTEM , RELATIONAL
+ OBJECTS - DB-SYSTEM

7 + OBJECTS
l O

(0BJ 876543
(TYP DOOR-C8)
(POS 3000 2000 0)
gcRP 3FL W37 B&C)

NAM D3.18)
(REL TO ROOM3.18)

DATA EXCHANGE
FILE

Figure 1. Object oriented implementations described in this paper.

1. INTRODUCTION

Because of the large variety of products and different viewpoints of numerous
participants the construction industry needs generic i.e. application independent
software tools which can be easily used and tuned for specific tasks. Construction
industry is too fragmented to support any significant software development unless a
common software basis can be used for different applications.

The success of the current generation of CAD-systems can be partly explained by
the generic functions provided by these systems for geometric design and drawing
preparation.

Unlike many other products which are designed with CAD systems buildings are
mainly assembled from prefabricated components and materials. These basic parts
are described to a large extent by non-geometrical information. This paper presents
some possibilities to enhance CAD and other software tools with the management of
non-graphical product data according to a simple generic product model. The model
provides a common basis for data exchange between dissimilar design and data
management systems. It also provides an application independent abstraction of data
structures which can be used for the development of various application systems.

2. OBJECT ORIENTED GENERIC PRODUCT MODEL
2.1 Requirements on the generic model

The present generic product model is based on the following functional
requirements:

(1) Feasibility for implementation using a variety of software tools.

(2) Open data structure allowing incorporation of new object/entity types, attributes
and relationships. Implementations should be able to adopt ad-hoc
enhancements and ignore non-relevant or unknown data.

(3) Hierarchical decomposition and networking of data in a viewpoint-dependent way.

(4) Grouping of data according any agreed basis. Standardized building classification
codes are an example of a widely used grouping mechanism.

2.2 Object orientation

Object orientation was chosen as an approach to map the real world domain of
interest directly into a conceptual model and further into software. It provides basis for
data abstraction and software modularity. In this contex the folllowing interpretation of
what is "object oriented" is adopted:

Object: A collection of data which describe a thing or concept in the application
domain. Object assigns values to attributes which are defined by classes. Examples
of things represented by objects: buildings, functional systems of buildings, building
parts, rooms, surfaces, components of parts, connections between parts, activities,
organizations etc.

Complex object: Object which consists of objects at lower levels of
decomposition.

Identification: All objects have a unique identifier.

Encapsulation: An object contains all data about itself; also about it's
relationships with other objects.

Classes: Attributes of objects are defined by classes.

Inheritance: Classes may have subclasses which inherit their attributes from one
or several superclasses. For example, class "FireDoor" may be subclass of class
"Door". It should be noted while multiple inheritance is necessary at the the
conceptual level there are ways to implement it using single inheritance only.

Polymorphism: Objects of different classes may have different local
representations of corresponding properties. For instance, the "shape” of different
things may be represented in class-specific ways.

Figure 2 shows the generic product data model in an IDEF1X diagram where the
encapsulation of data in objects is also shown. The boxes are implemented as tables
in a relational data base system. Object oriented implementation encapsulates
interrelated data into "objects".

o) dentifying 1 to 0, 1 or many relgtionship (Z = 1 10 0 or 1) :

smm——-—-@ Non-identifying - ' * - : XXXXX
TYPE-OBJECT
APPL-
TYPE " PROPERTY=SET DEpL_ / YYYYY
TYPE ~ NAME 198 @ (TYPE-NAME (FK) CLASS (TYPE—NAME (FK))
TYPE - DESCRIPTION APPL-DEP-CLASS Is o ¥
Y2 L
I e L e e
onsists | Specifi
Consists of !JDC(_IfIES 77777
! : YPE—NAME (FK
¢ 'NSTANCE-OBJECT 5
INSTANCE ™ LINK L,
INSTANCE “NAWE) From g (FROMINSTANCE (FK _ e
:;‘AéRTL;‘(éE.TTSL A(KSK) oo TO.INSTANCE (FK) Application
WNCE -1D_(AK) REL.SHIP~TYPE., . : ;
INST-OF TYOL (FK)™ < o dependent attributes
Nor DR SORBTON — o I
T Application dependent ™. ;
relationship types - GROUP-OBJECT
5 .
RELATIVE-POSITION GROUP MEMBER GROUP .
INSTANCE (FKY __@ (MBRINSTANCE (FK GROUP—NAME - Consists of
THANSE MATRIX GROUP-NAME (FK) | g Has [SUPER.GROUP (FK) | @-~——m—— I
GROUP-DESCRIPTION

Figure 2. IDEF1X-diagram of the generic product model.

2.3 Objects of the generic model

Data of a real world target such as a building consists of two kinds of objects: types
and instances. For example, a window type can be described as a complex
composition of instances of a frame, glass sheets, a handle etc. Several instances of
this window type can occur in different positions of a wall panel. The wall panel again
is a type which may have one or several instances in a building etc. It should be noted
that a composition of instances is always a type which may itself be instanciated at a
higher level of composition. The model of figure 2 is further explained below.

A type object encapsulates a set of properties as attribute values. The properties of
types are described as property sets i.e. one or more application dependent objects
which encapsulate the type-specific assigned values of application dependent
classes. For instance the type "theClassDoorTypeA" may assign specific values to
the attributes of the classes "Window" and "Door".

An instance object represents an occurrence of one type object. The same type
may be referred to by several instances. Thus, similar items can be represented
without redundancy. An instance is also part of a type. This hierarchical composition
implies existence dependy: if a type is deleted then all instances contained by it shall
be deleted, too. The instance object encapsulates an optional relative position of
the instance with respect to it’s father object: a part is located with respect to the
assembly. Exeptionally, relative position may be with respect to another instance. For
practical reason it is suggested that an instance may be identified by it's name and
father type as an alternative to a globally unique identifier. Thus several distinct type
objects (e.g. assemblies) may contain instance objects (e.g. parts) which have the
same name (e.g. part number).

Group objects encapsulate collections of instances as group members.

Relationships between instance objects are represented by links from an instance
to another. A link is specified by a relationship type.

2.4 Relationships of the generic model

The present model provides three generic relationships which cover a wide range
of application needs and can also be easily understood by a human:

Hierarchy is used as a tool for viewpoint dependent decomposition of data.
Example: a building may consist of spatial, structural and distribution systems. A
spatial system may consist of the spaces in horizontal floorplans and vertical
communication spaces such as staircases and elevator shafts. A floorplan may
consist of appartments which consist of rooms which contain pieces of furniture etc.
This kind of hierarchically composed objects (which consist of subobjects etc) are
called complex objects. A hierachy relationship as used here actually is a combination

of a) existency dependency: if the father object is deleted then all son objects are
deleted as well and b) relative location (in case of physical things) of a son object
with reference to its father object. In most cases these two relationships coinside.
Only in exceptional cases separation of existency dependencies between objects and
locations of objects relatively to other objects is needed. Splitting the two is necessary
e.g in modelling compex connections between physical parts.

Network relationships as links are used to express viewpoint dependent functional
interrelations or physical connections between objects. Examples: a beam is
connected to a column, a cost is caused by resource utilization, a task is preceded by
another task etc. In this paper network relationships are called links emphasizing the
encapsulation of a relationship in an object: the object has a link of a specific
relationship type to another object. Relationship type is an application dependent
enumeration which may be associated with application dependent rules concerning
existency dependency etc. For instance, the interrelations of a physical joint and the
connected structural members are represented by links. These application dependent
rules are not considered in the generic model and should not usually be a concern of
data exchange either.

Grouping structure can be used to create collections of objects for any purpose.
Grouping is an important tool of data exchange: various authors of data are likely to
organize their data mainly by using (viewpoint dependent) hierarchical and network
relationships. However, the private organization of data by an author is not usually
relevant to another party having another viewpoint. This is why classification
standards are emphasized in the construction industry: classification of e.g building
parts is used as a grouping criteria. Most CAD systems provide a simple grouping
mechanism based on an analogy of transparent "layers": each drawing entity belongs
to a layer. In practice more versatile grouping mechanisms are needed. The current
model provides hierarchical grouping which can map current classification codes.
Simultaneous grouping according to different criteria allows different receivers of data
to create flexible access mechanisms rather than enforcing a fixed data structure.

2.5 Incorporation of application dependencies

Within an application domain (e.g. AEC-design) certain agreements or standards
must be established concerning the attributes etc. of objects in order that different
systems can be integrated. The present product model makes a clear distinction
between the generic and application dependent parts. The application specific
conceptual model (e.g. AEC product model) can be specified within the generic
model in terms of groups, link (relationship) types and classes.

3. IMPLEMENTATION CONSIDERATIONS
3.1 Implementation with a CAD-system

Capabilities to store and manage complex design objects are added to a CAD-
system. The focus is on the non-graphical data of objects in order to satisfy the
vertical integration between different phases in the building process.

The applied CAD environment, Autocad 11, alithough being basically drafting
oriented, provides means for the management of structured (graphical and non-
graphical) data:

- BLOCK: Collection of any entities (a symbol) or inserted blocks defined as a
single entity. Hierarchical composition is provided by nested blocks.
Block itself is not a visible entity.

- INSERT: Instance of a block at a given position.
- ATTRIBUTE DEFINITION: Name, default value and prompt text of a property.
- ATTRIBUTE: Value of an attribute assigned at insertion time.
- HANDLE: Internal unique identifier of an entity.
- LAYER: Grouping mechanism for visibility and selection control.
- AUTOLISP: interpreted programming language for user defined functions.
- C-INTERFACE: C-language interface for application developers.
- MENU: Taylored puli-down menus.
CAD-ENTITIES OBJECTS IN NEUTRAL FILE
BLOCK class (CLA closs
ATTDEF attribute ® (ATT attribute)
A (.. ..)
ENDBLK)
BLOCK type
INSERT class
ATTRIB atiribute=value A S
ATTRIB ... (TYP type
'NSF.RT class <=2 >>| (CIM closs value)
ATTDEF 1D M)
ATTDEF NAME)
ATTDEF rship .
ATTDEF ...
ENDBLK
INSERT type] {INS Td
ATTRIB 1D =id (INT type)
ATTRIB NAME=instance—nome - EPOS x y zuxuyQ ~uy) ux O}
ATTRIB rship=hndlt,hndi2, .. < GRP grl gr2 qrd gr4 grb
ATTRIB ... =.. == (NAM instance-name)
X=x, Y=y, Z=z, ANG=angle (REL rship idg1 id2)
HANDLE=hnd! (REL .. U
LAYER=gr1~qgr2—-gr3—grd—gr5- >,_

Figure 3. Principle of the CAD-implementaticon illustrated
by mapping between CAD-entities and the physical file.

These capabilities are used in the following way to implement the prescribed generic
model:

Attributes of an application dependent class are stored as attribute definitions in
a block which is named according to the class. The class-block may also contain any
class-specific fixed graphics. At the least, a graphical marker symbol needs to be
included in the class block in order to provide a visual notification to the interactive
user on the screen. The class may refer to an optional Autolisp-program which
generates attribute-value dependent graphical presentation of a class member.

Type-objects are defined as blocks which contain one or several inserted class
blocks i.e. property sets. Types also have attributes which define name, id and links
(relationships) of instances. The values of the class-specific attributes or targets of
links are given (by the user or by an application program) at insertion time. The type
may also include any type-specific fixed graphics, class-related parametric graphics or
user-supplied interactive graphics.

Instance-objects are created by inserting type-blocks to given positions. Upon
insertion time the values of name and id are stored. Relationships with other instances
are stored as attribute values containing the relationship type and a reference to the
linked object. These references are stored internally as internal identifiers, called
handles.

Grouping of data is done by means of layers. A layer may have a descriptive
alphanumeric name. Given a flat layer structure, hierarchical groups are implemented
by using layer names which contain a sequence grouping codes e.g. classification
codes as layer names. A variation of this is to use an intuitive grouping mechanism
based on layer names as combinations of nemonic codes [POyry 1991]. Example:
non-bearing internal walls may be assigned onto layer name WAL-INT-NBE-. Because
of limited length of layer name at most 5 short codes can be combined into a layer
name in this manner which has been proved to be quite useful in practical design.

Management of application dependent entities and relationships is done by
Autolisp- and C-language programs which maintain the non-ambiguity of the data
structure and also automate some tedious functions.

The ASCII neutral file interface is also implemented as an Autolisp or C program.
The interface maps the prescribed internal data structure to the neutral file format. For
instance, the internal Autocad handies are translated to identifiers.

Methods of object classes are implemented as Autolisp programs. The names of
methods are stored as attribute values to type blocks. Specific user interface
programs allows the user to access and exequte methods of an object.

3.2 Implementation with a relational database system

A relational data base management tool, dBase IV, is enhanced to allow the user
to communicate with the system via an object oriented view in addition to the
relational view. The user interface hides the internal data structure which is imposed
by the relational implementation and breaks up the encapsulation of data into objects.
The system provides functions to extract various reports from the data base. The
implementation based on figure 2 is quite straight forward. The main purpose of the
relational database implementation is report generation and reorganization of data.

FILE EDIT VIEW || OPTIONS MESSAGES XXXXX YYYYY HELP
TYPES % R BN 0) e H
V INSTANCES Groph = PROJOUTDWG
GROUPS... meree o=
LINKS
ATTRIBUTES
SET CRITERIA.. B
HIERARCHY LEVELS.
. EXPAND ASHRINK o
v TREE -
v GRAPHIC
APPLICATION...
/ e
KERRQ;&: :
ﬁ;;;j ~PORTAIKKO1
/TILAJAR\JESTELMAZ '''' "
PROJEKTION 1ee— RAKENNUST... 7~ RAKENNEJARJESTELMAZ ..
' RAKENNUSZ € LAMMITYSUARJESTELMAZ. .. . LAMMINV
~PIHA... VESIJARJESTELMAD === KYLMAVE
P~ALUE... ILMASTOINTIJARJESTELMAZ . 7 —VIEMAR!
SAHKOJARJESTELMA?. -
nomalr STELMA? L ;

Figure 4. A planned screen view of the OBJECT BROWSER program.

3.3 Implementation with object oriented programming

An object browser program is implemented using an object oriented
programming environment: Actor and MS-Windows. The program provides a set of
basic functions to manage object oriented product data, to navigate in the complex
object network, select specific views of data and edit data. The program can also be
used as a software sceleton which can be enhanced into specific application
programs by adding application dependent classes and methods. The object oriented
programming language provides a close mapping between the conceptual mode! and
implementation. A library of re-usable object classes essentially reduces the

programming effort. The programming environment allows incremental and
exploratory application development.

3.4 Physical file format

The neutral data exchange file format is based on the syntax of the LISP
programming language and provides a close mapping to the generic model, is easily
human- and computer-readable and can be flexibly enhanced with new capabilities.

The basic element of the syntax is a list which is enclosed by paranthesis. The first

item of any list is a keyword which defines the meaning of the remaining parameters.

Any parameter may be a list itself etc. Thus a hierarchical structure is described by the
nested parenthesis. Objects are stored as packages which encapsulate all data of
themselves and are clearly distinguished from other objects. Preliminary comparision

indicates that translation to ISO/STEP physical file syntax is fairly straight forward.

(CLA Door

-y wms W

)

(CoM
(NAM
(OTY
(POS

(REL

(REL

(GRM
)

~-e ws e

(TYP DoorTypeA
(CLM Door 800 2100 50)
(INS ...)

(INS ...)

i
(ATT width REAL mm) ;
(ATT height REAL mm) i
(ATT thickness REAL mm) ;

’

e W Wmg wg wg

(TYP OfficeTypeX
(CIM ...)
(INS 123456

'Door to room 3.18!
D318)

DoorTypeA)

2400 0 O
100010)
FromRoom 234567)
ToRoom 345678)
3rdFloor Week37)

e ™ Mg Ms WM me W W We W = Ny

Note: group objects (GRP ...)
group members encapsulate reference to groups. Group
names can be part of an application standard.

Application dependent class
.. defines a set of

.. properties

.. as attributes

End of class definition

Note: If application dependent classes are predefined by
a standard then class definitions need not be included in
a data exchange file.

Type object assigns

.. values to properties
.. and consists of parts
End of type object

Instance as part of type
; Comment text
Instance-nane

Occurrence of type
Relative position

.. and orientation
Relationships of given kind
... with other objects
Member of multiple groups
End of instance-object
More parts of type etc
End of type object

need not be included if

Figure 5. Principle of the data exchange file syntax.

4. ACKNOWLEDGEMENTS

The described development is part of an on-going project "Object Oriented CAD"
(OOCAD) carried out at VIT with partial funding from TEKES, the national
Technology Development Centre.

The current development is a continuation of several previous efforts in Finland:
CAD-systems based on a generic object oriented product model were developed by
CADEX Oy since 1986 for the design and detailing of building structures. The Finnish
concrete industry developed since 1986 a national industry standard, called
BEC/STD, concerning the product model and data exchange of precast concrete
structures. A generic building product model was sketched out in 1987 within a
project called RATAS which has influenced many subsequent efforts.

Some ideas have been adopted from the object oriented programming paradigm
as expressed by e.g. the SMALLTALK programming language, but also from the LISP
programming language, the PHIGS standard for 3D computer graphics, common
data structures of many CAD systems, the well known GARM model [Gielingh 1987]
and the evolving ISO/STEP standard.

5. REFERENCES

1. Cadex Oy, ConcreteCad and SteelCad systems, Internal information, 1986...90

2. Wim Gielingh: General AEC reference Model, IBBC-TNO, 1987

3. RATAS phase |l, part 3: Building product model, Repott in Finnish, 1987

4. Matti Pyry: Private communication on architectural design using Autocad, 1991

5. C+ +, Borland international Inc, 1691

6. Dewhurst & Stark: Programming in C+ +, Prentice Hall, 1989

7. C+ + /Views, CNS Inc, 1991

8. Pinson & Wiener: An introduction to object oriented programming and Smalltalk, Addison-Wesley,

1988

9. Smalltalk/V Windows, Digitalk Inc, 1991

10. Shlaer & Mellor: Object-oriented systems analysis, Yourdon Press, Prentice Hall, 1988

11. Winston & Horn, LISP, Addison-Wesley, 1984

12. AutoLISP programmer’s reference, Autodesk Co, 1990

13. AutoCAD user's manual, Autodesk Co, 1991

14. AutoCAD development system programmer’s reference manual, Autodesk Co, 1991

15. Actor User's Manual, the Whitewater Group, 1990

16. Object Graphics user's manual, the Whitewater Group, 1990

17. Whitewater Resource Toolkit user’s manual, the Whitewater Group, 1990

18. Marty Franz: Object oriented prcgramming featuring Actor, Scott, Foresman and Company, 1990

19. Microsoft Windows Development Kit, Microsoft Co., 1991

20. Charies Petzold: Programming Windows, Microsoft Press, 1990

21. Bertrand Mayer: Object oriented software construction, Prentice Hall, 1988

22. Grady Booch: Object oriented design with applications, The Benjamin/Cummings publishing
company, 1991

23. Physical file, Part 21, Standard for the Exchange of Product Data (STEP), Working documents, 1ISO
TC184/5C4

