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Abstract

Automated design performance assessment through simulation will be an
important aspect of future product model technology. The research in this area
has so far been focused on traditional simulation tools. However, the rapid
development of new structurally different tools calls for a shift of attention. New
object-oriented methods of describing simulation models can and should be
integrated with the product model itself. In this paper we will briefly review a
current development trend in continuous simulation and present a new language
for model description, Neutral Model Format (NMF), which in recent years has
gained considerable attention in thefield o building simulation. The possibility
of joining the continued NMF development with the STEP domain is discussed
and some examples o NMF based EXPRESS models are presented.

1. INTRODUCTION

One driving factor behind product model research is that it will give designers
direct access to easy and repeated design evaluation. Obviously, cost estimates,
bills of materials, and various drawings should be easily generated from product
model data, but of equal importance are measures of the dynamical performance of
the design at hand. In the AEC field the EEC COMBINE project (phase 1) has
demonstrated feasibility of data mapping from an EXPRESS-based data model of a
building to a range of established building performance evaluation (BPE) tools
[Augenbroe 19931. Phase 2 of this project seeks to put this technology to use
among practitioners in the field. Another industrial sector with considerable activity
in both product modelling and simulation is the process industry.



The authors of this paper have for some time worked with new simulation
techniques and languages for continuous modular systems. These techniques are
applicable to a large class of static and dynamical simulation problems in, e.g., the
building, energy and process industries. One important aspect of this work has
been involvement in the definition of a standard format, Neutral Model Format
(NMF), for expression of component level simulation models. The purpose of this

paper is to investigate the applicability of STEP technology in the continuation of
this work.

Currently, component models (primitive models) are automatically translated from
NMF to the proprietary format of the target simulation environment. For example,
an NMF model of an axial fan is used to generate an axial fan class in, e.g. IDA
[Sahlin 19911. The class is then instantiated in the target environment. The
instances are furnished with suitable parameters, and incorporated into a system
model. The next natural step in the NMF development is to formulate an
environment independent way of expressing and communicating instantiated
system models as well. Several authors have already suggested and even
implemented such NMF extensions [Kolsaker 1994a, Lorenz 1994]. Since object
oriented simulation is a highly relevant topic for product modelling efforts
[Augenbroe 19911, we will analyze the implications of using EXPRESS for data
modelling of NMF instantiated system models.

In the next two sections a brief overview is given of current work on so called
object oriented simulation methods, mainly in the context of building simulation,
and of the Neutral Model Format.

2. OBJECT ORIENTED SIMULATION ENVIRONMENTS

The term object oriented is perhaps not the best descriptor for these tools but it has
nevertheless become widely used and we will use it here as well. The object
orientation concerns mainly the modularity of the physical systems that are being
modelled and not so much software techniques. Naturally, most recent
developments also use object oriented programming to varying degrees.

2.1 PHYSICAL SYSTEMS AND MATHEMATICAL MODELS

Physical systems that we am to simulate are modular in nature, i.e. they naturally
decompose into subsystems. Frequently, identical subsystems are repeated a
number of times in a model, a fact that is taken advantage of in many tools.
Furthermore, the systems should have a basically continuous behavior, meaning
that equations used to describe them, as well as forcing functions, will have a
limited number of discontinuities. Purely event driven systems are excluded.

Models may be expressed in several ways. Bond graphs, linear graphs, block
diagrams, electrical analogies, and mathematical equations are frequently used
modes of expression. Also used, for mainly historical reasons, are subroutines in
some programming language. A discussion of pros and cons of various methods of
description can be found in [Lorenz 19871.



If characterized by equations, the physical systems under consideration will require
both algebraic and differential equations. Differential equations can be either
ordinary (ODE) or partial (PDE), although current tools require that PDEs are
explicitly discretized in space and thus turned into ODEs. Note that in contrast to
many widely used commercial tools the simulation environments we are concerned
with here are not limited to ODEs only. They allow a free mixture of algebraic and
ordinary differential equations generally referred to as differential-algebraic systems
of equations (DAE).

Furthermore, the simulation tools under discussion are rarely used for applications
where a strict formalism for generating governing equations exists. In, e.g.,
electrical circuit analysis, multibody mechanics, or structural analysis special
purpose systems may be more advantageous.

Examples of physical systems that fit this description can be found in many fields.
Chemical process plant simulation is a significant area of application. Energy
distribution networks and plants is another. The authors of this paper have mainly
worked with building related systems and important applications within this field
are: thermal processes in walls and spaces; air and water based distribution systems
and plants; and automatic control.

2.2 SEPARATION OF MODELLING AND SOLVING ACTIVITIES

In contrast to many established design tools, e.g. in building simulation, OOSEs
separate strictly between the modelling and subsequent system solution activities.
A modelling tool is often used for model formulation. This tool generates a system
model, generally expressed in a modelling language. The model is then treated by
a solver. An important benefit of a separate solver is that it may be altered or even
exchanged with minimal interference with the modelling environment.

Key characteristics of the modelling language, such as expressiveness and level of
standardization, are critical to the usefulness and development potential of the
overall OOSE. The Neutral Model Format is part of such a modelling language.
This paper describes one way towards a complete modelling language that may be
standardized.

2.3 TARGET USERS AND SOFTWARE STRUCTURE

Most of the simulation tools under discussion are intended for quite sophisticated
users, who are well versed in mathematical modelling, numerical methods and
advanced use of computers. These tools are not directly suited for designers,
without special simulation expertise, that use simulation as one of several methods
for design evaluation. However, for the expert, they generally provide an efficient
graphical environment for model building, simulation and analysis.

Other tools, e.g. EKS and IDA, are primarily intended for efficient design tool
production, and the normal end user will rarely interact directly with the underlying
OOSE techniques.



2.4 AVAILABLE AND EMERGING OOSEs

A few tools and environments with the discussed main characteristics are already
matured and available and others are under development. Among the available
ones are e.g.:

TRNSYS was developed during the seventies at the Solar Energy Lab at the
University of Wisconsin. It was one of the first modular simulation solvers for
DAEs and it is distributed as a Public Domain product. Several compatible
modelling tools have been developed, e.g. PRESIM.

HVACSIM+ is a solver with similar characteristics as TRNSYS in terms of model
format and structure, but more recent numerical techniques are utilized. It was
developed by NIST in Maryland and released in the mid eighties on a Public
Domain basis.

SANDYS is a general DAE solver and textual modelling environment developed
by ASEA, Sweden, in the early eighties. It is commercially available from ABB
Corporate Research.

ALLAN-NEPTUNIX is a graphical modeller and solver combination developed
by Gaz de France and CISI Engineering. It is since a few years commercially
available from the developers.

ESACAP is a recently developed DAE solver by the European Space Agency. It is
commercially available from STANSIM, Denmark.

DYMOLA is a text based commercial modelling tool with symbolic algebra
capabilities and interfaces to several solvers. A GUI is under development.
Available from DYNASIM, Lund, Sweden.

Some tools under development are:

CLIM 2000, a graphical modelling tool for building applications, is developed by
Electricite de France.

MSI1 is a graphical multi input language modeller with interfaces to several solvers
by Lorenz Consulting, Liege, Belgium in cooperation with Electricite de France.

IDA, a graphical modelling environment and solver, is under development at the
Swedish Institute of Applied Mathematics.

SPARK is a solver and graphical model editor under development at LBL,
Berkeley, California.

OMSIM is a graphical modelling tool under development at the Dept. of
Automatic Control at the Lund Institute of Technology, Sweden.

EKS is a C++ toolkit for development of energy related simulation design tools, by
among others the Univ. of Strathclyde, Scotland.



3. THE NEUTRAL MODEL FORMAT

Without a comprehensive, validated library of ready made component models in a
relevant application area most simulation environments are rather useless. To
develop all necessary models from scratch is, in most projects, quite unrealistic.
And since the cost of developing a substantial library easily exceeds the
development cost of the simulation tool itself, it is important to be able to reuse
what other people already have done. This was the basic motivation for proposing
a text based neutral model format to the building simulation community in 1989
[Sahlin and Sowell 1989]. Since then the proposal has attracted a great deal of
interest from environment developers and users in several application fields.
Prototype translators have been developed for IDA [Kolsaker 1994a], SPARK
[Nataf 1994] and ESACAP [Pelletret 1994a]. Translator development projects
have been funded for TRNSYS, HVACSIM+ [ASHRAE 1994], and MS1 [Lorenz
1994]. Export and import capabilities are planned and partly implemented for
ALLAN-NEPTUNIX [Jeandel 1994].

Pending formal standardization, ASHRAE (American Society of Heating,
Refrigerating, and Air-conditioning Engineers) has formed an ad hoc committee
that approves changes to the present format.

NMF has two main objectives: (1) models can be automatically translated into the
local representation of several simulation environments, i.e. the format is program
neutral and machine readable; and (2) models should be easy to understand and
express for non-experts. The first objective enables development of common model
libraries, which can be accessed from a number of simulation environments.

3.1 BASIC NMF FEATURES

Internal component model behavior is described by a combination of algebraic and
ordinary differential equations. Equations may be written in any order and in the
form

<expression> = <expression>;

NMF only states equation models, while solution of equations is, in some cases,

left to the target environment (e.g. IDA, or SPARK), or the NMF translator in others
(e.g. TRNSYS, Or HVACSIM+).

NMF supports model encapsulation through a link concept, i.e. models may only
interact via variables appearing in LINK statements. To enhance and encourage
model plug compatibility, links and variables are globally typed. The idea is that
basic list of such types should be included in each revision of the standard, but that
users may add to the list as need arise. A selection of such global types is:



QUANTITY_ TYPES
/* type name unit kind */
Area “m2" CROSS
Control "dimless" CROSS
Density "kg/m3*" CROSS
Factor “dimless* CROSS
HeatCap “J/{K)" CROSS
HeatCapA "J/(K m2)*" CROSS
HeatCapM "J/ (kg K)* CROSS
HeatCond “W/ (K} THRU
HeatFlux W THRU
HeatFlux_k “kwe THRU
Temp "Deg-C" CROSS
LINK_TYPES
/* type name variable types... */
/* generic (arbitrary, arbitrary,...) implicitly
defined */
F (Force)
FL (Force, Length)
Q (HeatFlux)
T (Temp)
PMT (Pressure, MassFlow, Temp)
PMTQ (Pressure, MassFlow, Temp, HeatFlux)
MoistAir (Pressure, MassFlow, Temp, HumRatio)
BidirFlow (Pressure, MassFlow, Enthalpy, HeatFlux)

A quantity type includes a physical unit and information about potential (across) or
flow (through) type. A link type is simply an ordered list of quantity types. Let us
now look at an example of a rather simple NMF model using the heat equation in

one dimension.

Th

ab

Figure 1. A finite difference model of a wall with one homogeneous layer. Tempe-
rature and heatflux on each terminal.



CONTINUOUS_MODEL tg hom_wall

ABSTRACT
“A 1D finite difference wall model. One homogeneous layer.
TQ interfaces on both sides.”

EQUATIONS

/* space discretized heat equation */

c_coeff * T'[1] = Taa - 2.*T[1] + T[2]
c_coeff * T'[n] = T[n - 1] - 2. * T[n] + Tbb ;

FOR i = 2, (n -1)
c_coeff * T'[i] = T[i - 1] - 2. * T{i] + T[i + 11;

END_FOR ;
/* boundary equations */
0 =-Ta + .5 * (Taa + T[1]) ;
0 =-Tb + .5 * (T[n] + Tbb) ;
0 = -Qa + d_coeff * (Taa - T[1]) ;
0 = -Q0b + d_coeff * (Tbb - T(n]) ;
LINKS
/*  type name variables .... */
™ a_side Ta, POS_IN Qa ;
TQ b_side Th, POS_IN Ob ;
VARIABLES
/* type name role def min max description*/
Temp Tn] ouT 20. abs_zero BIG ‘“temperature profile”
Temp Ta ouT 20. abs_zero BIG ‘“a-side surface temp”
Temp Tb ouT 20. abs_zero BIG *b-side surface temp”
Temp Taa ouT 20. abs_zero BIG ‘“a-side virtual temp”
Temp Tbb ouT 20. abs_zero BIG “b-side virtual temp”
HeatFlux Qa IN 0. -BIG BIG *“a-side entering heat”
HeatFlux Qb IN 0. -BIG BIG ‘“b-side entering heat”

MODEL_PARAMETERS

/* type name role def mi max description */

INT n SMP 3 3 BIGINT “number of temp lavers”
PARAMETERS
/* type name role [def [min max]] description*/

/* supplied parameters */

Area a S_P 10. SMALL BIG *“wall area”

Length thick S_P .2 SMALL BIG “wall total thickness”
HeatCondL lambda S_P 0.5 SMALL BIG “heat transfer coeff”
Density rho S_P 2000 SMALL BIG *“wall density”
HeatCapM cp S_P 900. SMALL BIG *“wall heat capacity”

/* computed parameters */

generic d_coeff C_P “*lambda*a/dx”

Length dx Cc_P “*layer thickness*”

generic c_coeff c_Pp “rho*cp*dx*dx/ (lambda*3600.) ~
PARAMETER_PROCESSING
dx := thick / n ;
c_coeff := rho * cp * dx * dx / (lambda * 3600.) ;

d_coeff := lambda * a * dx ;

END_MODEL




To enable direct model translation to input-output oriented environments (e.g.
TRNSYS, or HVACSIM+), variable declarations have a role attribute indicating IN for
given variables and OUT for calculated ones.

Variables and parameters may be vectors or matrices. A parameter is anything that
must remain constant throughout every simulation. Links may also be vectors, thus
allowing models with variable number of ports. Vector and matrix dimensions are
governed by a special type of parameter, model parameters. Regular and model
parameters are divided ito two categories, user supplied and computed,
algorithmic computation of which is described in the parameter processing section.

Arbitrary foreign functions in Fortran 77 or C may be defined, either globa]ly or
locally within a model.

Special functions are defined to handle discontinuities, hysteresis, linearization, and
errors. A more complete account of NMF is given in the reference report [Sahlin,
Bring, and Sowell 1994].

3.2 NMF DEVELOPMENT DIRECTIONS

Currently, a reasonable agreement about the NMF grammar has been reached.
Developers can count on stability of the present format and backward
compatibility. This enables us to get on with the work of defining NMF-based
component model libraries and to develop further NMF translators. Several
substantial model libraries have already been developed and many more are
underway.

Regarding the format itself, several extensions have been suggested. In the
discussion of these it is important to bear in mind that, at the time of the original
proposal, NMF was not primarily intended as a replacement of existing proprietary
model languages, but as a complement, enabling component model exchange and
library building.

Planned extensions and supporting tools that fall within the scope of the original
NMF intentions are:

1. An NMF handbook with style guidelines for model architecture. The current
NMF manual is completely insufficient as a pedagogical tool. (Encompassed by
funded project [ASHRAE 1994].)

2. Model documentation guidelines and templates, storage and retrieval
mechanisms. This area is addressed by Pelletret in a recent (draft) proposal
[Pelletret 1994]. The ESPRIT OLMECO project - development of a large
mechatronics library - is another source of inspiration.

3. Investigation regarding adaptable models, through property inheritance and/or
through hierarchical modelling. Property inheritance between models may result in
better model reuse but it will on the other hand also have negative effects on model



portability, since inheritance trees must be passed when shipping a model. This
leads to reconciliation problems if a similar, but not identical, tree exists on the
receiving side.

4. Model library structure and management tools, including mechanisms for model
browsing and retrieval.

5. Discrete time (sampling) models. This is necessary to study sampling control
circuits.

There are several additional items that belong in this list - such as formal rules for
permitted model connections and a language or keyword system for expression of
model assumptions - that are omitted here due to space.

In the context of a complete modelling language the present format lacks the ability
to express:

1. Component model instances, with parameter values, initial values of all
variables, and information about boundary variables..

2. Hierarchical systems of such instances.

3. Numerical simulation parameters, such as tolerances, stepsize limits, algorithm
selection commands, that can be generalized for a large class of solvers.

4. Graphical schemata for user presentation of simulation models. Large models
are much easier to comprehend if they are described graphically.

The drive for development of a complete NMF-based modelling language comes
primarily from developers of new modelling tools, who see little reason to develop
proprictary formats. Two such developers have made concrete proposals and
implementations are well underway [Lorenz 1990], [Kolsaker 1994].

4. WHY STEP/EXPRESS?

STEP (STandard for the Exchange of Product model data) is an international
standard for product descriptions [ISO TC 184 1993]. The data for these
descriptions are modelled in a special language called EXPRESS, which is in itself
part of the STEP standard. EXPRESS is an object oriented language that is
particularly well suited for information modelling. A subset of EXPRESS is
EXPRESS-G, a fully graphical language for data modelling. EXPRESS-G
schemata can automatically be translated into textual EXPRESS code, which in
turn can be translated into, e.g., C++ class definitions. A number of tools and

related standards are (and will be) available for STEP/EXPRESS. A (default)
textual representation of any EXPRESS schema is for example implicitly defined
(STEP physical file).

Since the first proposal in 1989 the discussion about various NMF-constructs has
focused on the grammar. The textual appearance of selected models has been the
main object. This is of course quite appropriate for the equation core of component




models, but for instantiated system models and related data it may be more fruitful
to regard data models directly, and to treat textual representation as one of several
possible views. EXPRESS seems to be an appropriate vehicle for the future NMEF
discussion. Further reasons for the employment of STEP technology include:

e Simulation models will most likely be an important aspect of many product
model applications, and they should therefore be encompassed by STEP, either
as pure aspect models or as parts of global models

e Many existing STEP/EXPRESS resources will be useful for development of
NMF-oriented application tools

e The fact that STEP physical files most likely will be more difficult to read (for
humans) than a tailored high level language is of little consequence for realistic-
size simulation models, which generally are of such magnitude that they rarely
are printed and studied in their raw form

4.1 PRESENT NMF IN STEP

In this our initial work we have chosen to focus directly on the imminent problem
of defining conceptual models of NMF instances, and of hierarchical systems of
such instances. This means that nothing is said about the internal behavior, e.g.
equations, of a model. Only its state is encompassed, and it is assumed that the
underlying NMF model is known to all parties.

Another interesting issue is of course the conceptual models of internal behavior as
well, i.e. to model the present NMF in EXPRESS, with entities such as equation,
if_then_else_clause, etc. Such models are necessary for development of NMF
parsers and translators.

The main motivation for remodelling the present NMF in EXPRESS is
completeness. New component models could be communicated with the same
tools and protocols. A potential EXPRESS-based STEP standard would not have
to rely on an additional non-EXPRESS standard.

Additional benefits can be expected for design and implementation of NMF
component model databases and management tools.

The present conclusion is that it would be worthwhile to model the present NMF in
EXPRESS. However, since the discussion of instances and systems can be carried
out separately, we have chosen to focus on this in our initial work.

5. NMF MODEL INSTANCES IN EXPRESS-G

In the following an EXPRESS-G representation of NMF component and system
model instances is presented. An instance is a specific occurrence of a model
expressing the full state, in terms of its parameter values, variable values, and
associated data. Schemata 1 through 4 shows the EXPRESS-G representation of
this data.
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Schema 1

Schema 1 shows the structure of an NMF model instance, which may appear as
either a System, with references to underlying subsystems, or as a Component with
object bags for variables, parameters, model parameters, and links, each of which is
specified more closely in the following schemata . Model parameters are named
integers that are used for dimensioning of arrays and matrices. Links are the
connection ports of Components. The ports of a System are called LinkReferences.
They provide reference chains to underlying Links. The distinction between the
quantity subclasses parameters and variables is that parameters always remain fixed
at a given value throughout a simulation, while variables, naturally, vary.
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Schema 2

A quantity has a type (the NMF QUANTITY_TYPE referred t0), a name, a dimension
(if non-scalar), and a current value. Variables also have an initial value, which holds
the state at the beginning of a simulation for dynamic (or state) variables and an
initial value guess for algebraic variables. Discrete variables is a provision for future
development of discrete time NMF models and is not currently used.
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Schema 3

Continuous variables also have an optional flag given which, if present, indicates that
a variable, or selected parts of a field variable, are to be kept at a given value
throughout the simulation.

Schemata 3 and 4 specify storage structures and stored elements for current and
initial values (schema 3) and for given flags (schema 4).
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Schema 4

Values may be stored in either a sparse matrix storage structure or in full matrices
(or ditto arrays). Initial values are generally stored in a sparse structure where only
exceptions from the default value are listed.

Since the great majority of variables are calculated, the given flag is stored in a
sparse structure as well. The flags themselves are either a reference to a time series
of values (not specified in detail) or a GConstant symbol, indicating that the variable
is to be kept at its initial value throughout the simulation.

6. CONCLUSIONS AND FUTURE WORK

Our present work suggests that EXPRESS is suitable for modelling of many of the
data structures that are relevant for continuous simulation of modular systems. If
not incorporated into the STEP effort, a continuous simulation language
standardization project could certainly operate in a similar fashion and use many of
the same methods and tools.

Next on the agenda will be to test the functionality of the suggested data structures
by writing a parser for, initially, IDA system model descriptions.
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