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ABSTRACT: This paper addresses architectures for distributed, model-based, integrated 
information systems for AEC/FM.  The paper discusses the motivating factors that hinder the 
ability of current information techniques to support effective information sharing and 
collaborative decision-making. It describes the results of a prototype implementation of a 
model-based integrated system, which integrated a 4D-planning tool with commercial 
scheduling and estimating applications through a shared, model-based project database.  
The paper then presents a typical set of components for integrated systems: a reference 
architecture.  Finally, the paper describes the benefits of supporting multi-modal 
architectures (i.e., the ability to support a wide variety of data exchange paradigms through 
the distributed system) and transaction-based services. 
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1. INTRODUCTION 
Recent trends in information technologies move us closer to the goal of integrating the 

computing tools used throughout architecture, engineering, construction, and facilities 
management (AEC/FM)—a long-standing topic of research.  These trends include the 
explosion of interest and technologies for business-to-business Internet applications and an 
on-going maturation of industry data standards such as the Industry Foundation Classes 
(IFCs) (Froese et al. 1999).  In our research into integrated systems for project management, 
we have previously focused on data representation and standards for project information 
(Froese et al. 1997) and on visualization environments that allow project stakeholders to 
interact with the integrated project information [Schwegler et al., 2000].  These 
environments, however, do not support multi-disciplinary interaction and decision-making.  

Construction planning decisions usually affect many project stakeholders, from workers 
to various subcontractors to project managers to facility users, etc. Hence, coordination of all 
these perspectives is critical to maintain smooth progress on a project. Decisions must be 
based on many kinds and sources of information (3D CAD models from architects, cost 
estimating spreadsheets and construction schedules from the contractor, milestones from the 
owner, etc.). Typically, decisions must be made quickly to maintain the pace of a project. We 
have observed that, today, no tools help practitioners construct mental models of the focus of C
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the discussion in a meeting and to develop an understanding of the pertinent problems. Initial 
tests have shown that even simple highlighting and overlay mechanisms can help project 
stakeholders to focus the attention of meeting participants and explain an issue under 
discussion more effectively. Current software tools may support the sharing and representing 
of the project information, but do not enable users to relate many kinds and sources of 
information to each other. 

We contend that integrative environments that enable teams to visually and interactively 
relate project information require a variety of data exchange modes and database architecture 
components. In recent work, we have begun to address the issue of system architectures for 
distributed, model-based, integrated systems for AEC/FM (Gorlick and Froese 1999).  
System architecture addresses issues of how an array of software components distributed 
across multiple computers can work together to support generation of, visualization of, and 
interaction with relationships between project information that are necessary for multi-
disciplinary decision-making.  This paper introduces a typical or reference architecture for 
such systems. It describes the results from a prototype implementation of this architecture. 
Finally, it introduces two specific concepts that we believe to be important to the further 
development of such architectures:  multi-modal architectures and transaction-based services.  

2. MOTIVATION 
Construction project teams must consider a wide variety of information when making 

project decisions (Figure 1). Much of this information is produced electronically and is visual 
in nature, yet teams primarily use paper-based views of project information. These views 
often do not communicate critical relationships between project information or adequately 
highlight the important and critical information. Consequently, project teams spend far too 
much time trying to understand and describe project information to one another and are 
unable to leverage existing information to support decision-making and solve problems. 
Consider the following schedule review meeting for a major construction project in Southern 
California we observed:   
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Figure 1.  Even electronic documents require users to relate 
project information for decision-making. 



On the walls of the conference room are 2D construction drawings and the 
project Gantt chart. Each meeting participant has handouts consisting of the 
schedule, which contains 8,000 activities, and the meeting agenda. 
Participants have brought other types of documents to the meeting such as 
'marked-up' schedules, some contract documents, and construction drawings. 
The meeting begins with the first agenda item, 'Schedule Comments.’  This 
discussion involves the owner asking questions such as: Does the schedule 
meet contractual milestones? Do these activities adhere to project 
specifications? Why are you finishing this facility on this date? What if we 
change this milestone date? What if the equipment is late? Throughout the 
meeting, project participants are distracted as they shuffle through the 
schedule sheets searching for activities or as they scan the walls searching for 
relevant information, trying to understand the schedule and the issues at hand. 
Meeting participants come and go. Some leave to get information such as 
project specifications or to get updated information. In some cases, a 
document is passed around for participants to review. By the end of the 
meeting, twenty types of documents have been referred to or used as 
participants try to describe, understand, explain, and evaluate the schedule. 
Although several problems are noted, and issues or potential solutions 
discussed, no problems are resolved during this meeting nor during the 
successive three meetings.  

All of the information used was available online. Did it support the project team's ability 
to make decisions, and did the team effectively utilize the information they produced? No, 
since the team was unable to make any decisions and they spent more time trying to describe, 
explain, and evaluate the information than using the information to support decision-making. 
Our observations of project meetings show that teams spend most of their time on 
descriptive, explanative, and evaluative tasks - tasks that support the decision-making process 
- and approximately only 10% of the time performing predictive tasks or the critical "what-if" 
tasks that lead to better decisions. More importantly, teams rarely completed these predictive 
tasks in group settings. When they did, our observations showed that the reliability and 
accuracy of those tasks was low since team members often commented that the information 
was out of date or that they were uncertain of potential impacts to project activities and 
objectives.  

Further analysis of such meetings indicates that most of the information that teams need 
to perform descriptive, explanative, evaluative, and predictive tasks is currently produced by 
project teams. However, project teams cannot leverage existing project information for the 
following reasons: 
• Focus of information is not shared and project participants are easily distracted and forced 

to identify relevant information on their own.  
• Views are inappropriate for group use, hindering multi-stakeholder participation.  
• Views don't visually communicate critical relationships between project information, 

requiring project participants to manually integrate project information.  
To address these issues and improve the effectiveness of using information to support 

communication and decision making, we are investigating approaches to visual presentation 
and integration of AEC/FM project information.  The following section describes a prototype 
system developed as part of this research. 

3. A PROTOTYPE INTEGRATED SYSTEM 
A prototype integrated AEC system was implemented for a project dealing with 

interactive workspaces and integrated construction systems.  This work was carried out by the 



authors and other researchers lead by 
Martin Fischer at Stanford University’s 
Center for Integrated Facility Engineering 
(CIFE) collaborating with the Stanford 
Interactive Workspaces Project 
(Winograd and Hanrahan 2000).  A major 
objective of this project is to explore the 
potential for using advanced, interactive 
workspaces (as illustrated in Figure 2—
essentially, meeting rooms equipped with 
numerous interactive computer devices 
and the accompanying infrastructure to 
coordinate their use) to support 
construction team activities (Fischer et al. 
2000, Liston et al. 2000).  This involved 
the simultaneous use of several 
construction-related software tools to 
analyze the effects of changes to construction schedules made during construction site 
meetings.  This approach requires the ability to share project information among the different 
software programs.  Exploring this construction system integration was the second major 
objective of project.  Although the integrated systems approach is not dependent upon the 
interactive workspace environment, the workspace technologies research requires a solution 
for information integration and this research provides an excellent test bed. 

 

Figure 2.  An illustration of the interactive 
workspace used for the prototype. 

The integrated system developed for this project is illustrated in Figure 3.  The system 
included three applications: a custom 4D tool (3D CAD plus time visualization), Primavera 
Project Planner for scheduling and resource management, and Timberline Precision 
Estimating for cost analysis.  The data exchanged and stored in a shared database is 
structured according to a common schema loosely based on the IFC Release 2.0 model, but 
greatly simplified to provide only the data representation required for this prototype.  It 
contained approximately 10 classes for representing building elements (without geometry), 
work plans, work tasks, resources, and costs. 

The system uses a three-tiered 
architecture (tiered architectures and 
the components that make up the 
system are discussed in greater 
detail in Section 4).  The data tier 
contains components that read and 
write, which data structured 
according to the common schema, in 
both XML files and relational 
databases.  The middle tier contains 
“local model proxy components” 
that implement the common schema 
objects and expose them to 
application adapter components 
through a COM interface.  The 
application tier contains the 
applications themselves and 
adaptors that map the applications’ 
data to the local model proxy 

 

Data-
Server Project Model 

Database 

IFC
Model Proxy

Timberline 
Precision 
Estimating 

Adaptor

IFC 
Model Proxy 

Primavera 
P3 

Scheduling 

Adaptor 

 

Figure 3:  Components of a prototype distributed 
project management system. 
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components.  The adaptor component for the 4D tool is implemented within the source code 
of the application, and allows import and export of building objects, scheduling tasks, and 
relationships from building objects to tasks.  The adaptor component for Primavera is 
implemented as a stand-alone utility that maps schedule task and resource information from 
the shared project model in and out of Primavera's COM API (application programming 
interface).  The adaptor for Timberline is a stand-alone utility that maps building component, 
schedule task, and resource information from the shared project model into Timberline cost 
estimating assemblies, through a Timberline COM API, to create an estimate within the 
Precision Estimating application.  

The prototype was fully implemented and used to conduct a test-case scenario of a 
hypothetic schedule review meeting based on an actual large construction project in Southern 
California,.  A contractor realizes that the original construction schedule does not provide 
adequate time for equipment testing after a lagoon area is filled with water. Therefore, the 
construction operations for the lagoon base will have to be accelerated. During construction, 
however, the congested site necessitates that the lagoon area be used for material laydown 
and crane working areas.  Thus, the acceleration of the lagoon construction had to be 
carefully planned and coordinated among numerous work groups. 

At the beginning of the scenario, the three construction planning applications (4D tool, 
scheduling, and estimating) and the common project database were all synchronized to the 
current construction plan.  The analysis of the proposed change began with changes made 
inside the scheduling application to the number of crews assigned to the lagoon base 
construction activities.  This resulted in a revised and accelerated construction schedule.  The 
revised schedule dates and resource assignments where then exported from the scheduling 
tool to the project database.  Next, the new project information was read out of the project 
database and used to create an updated cost estimate, which could be compared with the 
initial estimate (although the building components and activities were the same, the addition 
of extra crews had been accompanied by a slight decrease in productivity, so the overall cost 
was somewhat higher).  Finally, the new schedule information was read from the project 
database into the 4D-planning tool, so that the new construction sequence could be carefully 
analyzed for adverse work interactions. 

The results of this prototype showed that the basic approach worked well, but that many 
specific system design and implementation issues must be addressed in detail before the 
system could approach a practical solution.  To further pursue this work, we have defined a 
reference architecture model for distributed systems. 

4. A REFERENCE ARCHITECTURE FOR DISTRIBUTED, MODEL-BASED 
INTEGRATED SYSTEMS 

4.1. A Tiered Reference Architecture 
As a foundation for discussions of system architecture issues, Figure 4 illustrates a set of 

software components for a distributed, model-based, integrated system for AEC/FM.  These 
components describe a typical—or reference—architecture, yet a wide range of variations is 
both possible and required, as discussed later in this paper.  This particular architecture is our 
interpretation of emerging standard practice for distributed systems as we believe that it 
should be applied within the AEC/FM industry (i.e., it is intended to reflect a “best practice” 
architecture rather than an innovative one). The architecture is organized into three logical 
tiers: the application or presentation tier contains application programs and related user-
centric components; the business objects or middle tier has two main roles—bringing the data 
and services of the distributed system to the local applications and implementing business 
logic processes; and the data tier handles the persistence of project model data.  Figure 4 



shows these logical layers residing on 
two or more physical computer 
systems: a user’s workstation and one 
or more central servers.  This is but 
one example of numerous possible 
configurations (For example, all 
components could be implemented on 
a single workstation; web-based 
applications could be implemented on 
central servers with only a web 
browser on a user’s workstation; or a 
local model proxy could be 
implemented on a local area network 
server for shared use throughout a 
small workgroup—alternative 

Section 5). 
configurations are discussed further in 

4.2. System Components 
Typical components are as follows: 
• Applications:  Users interact with 

the system through application 
programs: typically legacy 
applications for AEC/FM such as 
CAD, estimating, or scheduling 
applications, etc.  These 
applications typically maintain their 
own data sets in addition to the 
information shared through the 
integrated system.  Additionally, they can be new application classes specifically designed 
to work with the integrated system, or lightweight client interfaces to server-based 
application (such as browser interfaces to AEC services offered by Internet portal sites).   
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Figure 4.  A reference architecture for a distributed, 

model-based, integrated system 
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• Adaptors:  The data and operations contained within any application must be mapped to 
the shared data and operations available within the integrated system.  This mapping is 
carried out by an application-specific adaptor software component.  Depending upon the 
nature of the application, the adaptor may be encoded within the application itself, may be 
an add-on or macro within the application, or may be a separate program that interacts 
with the application through an application programming interface (API) or operates on 
the application’s data files. 

• Local Model Proxies:  The functionality or services available to participating applications 
through the distributed system are typically implemented on remote servers and made 
available to local applications through software components on users’ workstations.  This 
can be thought of as a local copy or proxy for the shared project model (see the description 
of “Webtop servers” in Lottaz et al, 2000).  The local model proxy component, then, 
exposes the distributed information services to client applications, and handles the work of 
communicating and coordinating the local data with the distributed servers.  

• Business Object Components:  An important concept of distributed systems technology 
is the role of business objects: centrally deployed software components that implement 
fundamental logic or processing common to all of the applications that use the data.  For 
example, this logic can handle a great deal of the data validation checking and the 



propagation of the effects of changes to one data object to other related data objects.  We 
know of no AEC-specific, currently available systems that make business object services 
available to outside applications, and we believe that the vast majority of AEC/FM 
business logic will continue to reside within applications for the near future.  However, we 
are aware of systems currently under development that could provide AEC business object 
services, and generic e-commerce-support products (such as Microsoft’s Biztalk server1) 
or standards from other industries (such as the RossettaNet Networked Application 
Protocols2), can be described as business object components.  As business object 
approaches emerge, they will fit well within the reference architecture.  We have shown 
them here as a distinct component that resides on servers, in-between the data components 
and the local model proxies.  However, business objects may well be implemented within 
any of the other components by adding additional logic processing to those component’s 
objects. 

• Data Components:  Various data components are responsible for maintaining the shared 
project model.  A typical configuration, as in Figure 4, involves a central database and data 
server component that interacts with model proxy components across an Internet/Intranet 
connection.  Alternative configurations include distributed data sources, where the central 
database is replaced with numerous, distributed, heterogeneous data sources; and 
approaches that rely on file exchange between model proxies with no central database.  

4.3. System Features 
Some key features of these components include the following: 
• Services:  The distributed system’s functionality can be described as various services that 

are offered to the participating applications.  Examples include basic access to shared data, 
data set management (e.g., checking data sets in and out of central repositories, object 
versioning support, data security, etc.  Each service is implemented in one or more of the 
components, and each component implement one or more services. 

• Programming Interfaces: An important issue in the system design is the specification of 
the programming interfaces or protocols used between components.  Some of the critical 
interface points for distributed, model-based systems are indicated in Figure 4 with 
diamond symbols.  Numerous technologies exist to provide partial solutions, such as 
COM, CORBA, XML, SDAI, etc.  These generic technologies, where used, must have 
AEC/FM-specific solutions implemented on top of them. 

• Schema: Each of the software components shown in Figure 4, as well as each of the 
interfaces between components, requires an underlying schema or data structures for 
representing project information.  Generally, the middleware and data layer components 
use industry standard schema, such as the IFCs, while the application layer uses 
application-specific schema.  Various components, and particularly the Adaptor, must map 
information between different, but related, schemas. 

4.4. Distinctive Characteristics 
None of the requirements or characteristics for distributed systems may be unique to the 

AEC/FM industry, but a number of characteristics differ from “typical” distributed systems, 
and this combination of distinctive characteristics may well be unique to the AEC/FM 
industry. The following are a few of these characteristics: 
• Complex Data:  AEC/FM projects are complex, and 

                                                          

so too are the data structures 
(schema) required to represent these projects. This is particularly true for the technical 

 
1 http://www.microsoft.com/biztalk/ 
2 http://www.rosettanet.org/ 



project information (e.g., CAD and other building product data), but also applies to 
AEC/FM project management data (e.g., schedules, estimates, quality plans, etc.) and 
commerce data (e.g., purchasing transactions, contracts, etc). 

• Large Data Sets:  Project data sets such as building product models are very large.  This 
fact alone means that an approach which involves applications accessing all required data 
from remote repositories on demand (i.e., as in typical Web applications) is likely to be 
infeasible.  Rather, a more advanced combination of coordinated centralized and 
decentralized data sources is required. 

• Reliance on Legacy Applications:  The previous two characteristics and other factors are 
likely to lead to an ongoing reliance on current, desktop applications (which we’ll refer to 
legacy applications), rather than a rapid adoption of new, web-based tools for most 
functions. 

• Emerging Data Standards:  Although the nature of the Internet revolution was not 
commonly anticipated even five or ten years ago, AEC/FM researchers and developers 
have maintained a long-standing recognition of the need for data exchange standards to 
support system interoperability.  A number of significant efforts have been under 
development for some time (e.g., STEP, IFC’s, aecXML).  To date, these standards have 
had little impact on either traditional or Internet-based integration, but they will become 
increasingly important as the scope of Internet-driven interoperability increases. 

• Organizational Challenges:  AEC/FM projects involve large numbers of small 
companies collaborating for short project lifecycles.  For distributed collaborative systems, 
this places a very high premium on minimizing systems’ “overhead” and in developing 
industry-wide solutions. 

5. MULTI-MODAL ARCHITECTURES 
As discussed, many variations and alternatives to the reference architecture are possible 

for the overall configuration of components.  Not only are they possible—we contend that it 
is necessary for a distributed AEC/FM system to support a wide variety of data exchange 
modes.  This section presents a series of typical AEC/FM data exchange scenarios (use cases) 
that we have developed to illustrate the need for a multi-modal solution.  For each mode, we 
discuss briefly the variations made to the reference architecture to support this mode.   

5.1. File-Based Data Exchange 
Use Case 1: A building product model is exported as an IFC file from the CAD system in 

which it was created. 
Use Case 2: An IFC file representing a building product model is read as input to an 

energy analysis package or to a 4D construction-planning tool. 
Data Exchange Mode:  Although the notion of distributed integrated systems nominally 

involves “on-line” access to a shared project database, the most common mechanisms for 
importing and exporting IFC data today involves file-based data exchange.  This mode can 
be fully supported by treating the data source component as a file, the contents of which are 
exposed to an application adaptor through a model proxy component (see Figure 5).  While 
it’s important to support this mode because of its prevalence among today’s limited set of 
IFC-enabled tools, file-based data exchange has many shortcomings compared to database 
approaches.  

This mode was implemented in the prototype system described above since each of the 
applications, working through the model proxy component, could import and export data 
sets as XML files.  This work well for many purposes, but it provides no mechanisms for 
the output of one application to be “merged into” the output from another application.  This 



was a severe limitation since the cost estimating required data from both the 4D viewer and 
the schedule applications.  
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Figure 5.  Architecture for file-based data exchange 
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Figure 6.  Architecture for server-
based applications 

5.2. Coarse-Grained Data Exchange 
Use Case 1: A complete building product model is exported from the CAD system in 

which it was created, across an Internet connection, into a shared project database, where it 
is available for other use by other applications. 

Data Exchange Mode:  Applications access data in “large chunks”, or collections of 
many objects.  These collections may correspond to complete models, user-defined objects 
collections, or the results of queries or stores procedures.  This mode is associated with 
relatively large data sets and/or slow connections. 

The prototype implemented this mode since each application, working again through the 
model proxy component, could import and export its entire data set to a central relational 
database.  This approach offered very good functionality, but our implementation (an initial 
“rapid prototype”) exhibited very poor performance for the scenario (the scenario involved 
approximately 2,000 building components and a total of approximately 9,000 objects).  
None of the other exchange modes described below were implemented in the prototype. 

5.3. Fine-Grained Data Exchange 
Use Case 1: A change-order management tool reviews the status of change orders stored 

within a shared project database. 
Use Case 2:  When an object is selected in a CAD tool, it can show the object’s cost data 

drawn from a remote project database. 
Use Case 3:  A “project explorer” interface allows a construction manager to browse and 

selectively edit all information stored in a shared, model-based project database. 
Data Exchange Mode:  Applications access data in “small chunks” (individual objects or 

small collections of objects).  This mode is suitable for relatively small datasets and/or fast 



connections.  It supports both traditional applications and “thin-clients”, or applications that 
provide little more than user interface functionality, as in the third use case above. 

5.4. Off-Line/Message-Based Data Exchange 
Use Case 1: An engineer sends a set of design changes to the architect as an e-mail (or 

similar type of) message. 
Use Case 2:  An inspector records inspection results into a tool on a palm-based 

computer, and the results are incorporated into the project database once the device is 
docked on the inspector’s desktop. 

Data Exchange Mode:  Applications send datasets as messages to be delivered to a 
recipient at some future time.  The connection from the local model proxy to the data layer 
is through a queued message system. 

5.5. Server-Based Applications 
Use Case 1: A construction manager uses a web browser to review the status of a 

project’s subcontract packages on an Internet portal site’s (i.e., a construction “.com” 
company’s) project management system, which maintains a model-based project database. 

Data Exchange Mode:  Although this mode provides a marked departure from traditional 
desktop-based applications, it still fits well within the general distributed-system 
architecture.  The primary difference is that all of the components shown in the typical 
architecture reside on servers, with the exception of the user interface elements of the 
application, which are separated out and delivered to the user’s computer through Internet 
HTTP capabilities (see Figure 6). 

5.6. Application-To-Application Data Exchange 
Use Case 1: An estimating system interacts directly with a CAD system, without going 

through a project database. 
Data Exchange Mode:  This variation, which can be applied to all of the above 

alternatives, involves applications communicating directly with one another rather than 
with a common project database.  This mode fits within the reference architecture by 
simply allowing individual applications to be treated as data sources as well as data clients, 
and implementing the data source API’s against the applications. 

5.7. Multiple Data Repositories 
Use Case 1: A “project management desktop” applications, which gives users access to a 

wide array of project information, maintains a building’s 3D geometry in a local file, 
accesses cost data across a local area network from a repository on a corporate intranet, and 
gets information about the project status directly from a remote project repository.  All of 
the data sources are synchronized as needed.  

Data Exchange Mode:  data repositories can be arranged in “chains”, where an 
application acts as a client of a “satellite” repository which, in turn, acts as a client of a 
centralized repository.  Data management and transaction services (such as loading, 
locking, caching, and synchronization of data sets) operate in a similar manner between 
each link in the chain. 

6. TRANSACTION-BASED SERVICES 
Currently, data exchange among computer applications within the construction industry 

relies almost exclusively on document exchange, where datasets are exported as some type of 
document file from one application and imported into another.  In contrast, our research is 
focused on model-based data exchange, wherein collaborative applications read and write 



objects to a shared project-model repository.  Although model-based integration continues to 
be the cornerstone of our approach to data exchange among construction applications, it 
exhibits many shortcomings (Eastman 1999).  For example, numerous model-management 
issues remain unresolved (such as extensibility of models, supporting different application 
models and perspectives, version management, etc.), model-based exchange has little to offer 
at the level of integrating user interaction issues, and there are many situations where “shared 
models” are simply not desired.  A simple example is a bank transfer, where a message 
requesting the transfer is sent from one account to another—there is no sharing of complete 
account information between the two accounts.  This approach of collaboration through 
transactions among applications addresses many shortcomings of model-based data 
exchange. 
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Figure 3:  Alternative integration paradigms. 
Transaction-based collaboration involves the broadcasting of messages from one 

application to other applications.  Messages include some type of instruction or some 
notification that an event has occurred.  Messages may include datasets and may result in a 
response from receiving applications.  Examples of transaction messages include notification 
that data has changed, exchange of specific datasets, requests to select and highlight objects 
in target application, requests to switch to certain views or perspectives, etc.   

Transaction-based integration also plays an important role with respect to emerging 
trends in the structure of construction information technology.  Traditionally, individual 
computer applications encompassed three main responsibilities or “layers”: representation 
and management of domain data, application functionality and logic, and user 
interface/information presentation.  Model-based integrated systems move much of the 
responsibility for the data layer away from individual applications and into distributed model-
based project repository mechanisms, yet this provides little support for integration of the 
logic or user-interface layers.  Transaction-based integration has no such limitation; 
transactions can relate to data, logic or user interface issues.  Thus, transaction-based 
integration provides support for the interactive workspace issues (Fischer et al. 2000, Liston 
et al. 2000) that are missing from model-based approaches.  Moreover, current trends in 
information technology systems indicate greater separation of the application logic and user 
interface layers, as in the systems offered by emerging e-commerce providers for the 
construction industry, where data and application logic components reside on service-
providers’ central systems while user interaction occurs through web-based interfaces.  As 
application logic and user interface layers are split apart, the need for standard mechanisms of 
communicating both data and messages between components increases: a need that is 
addressed by transaction-based integration. 

Transaction-based integration doesn’t replace model-based integration, but could provide 
an important additional service offered by a distributed system architecture.  Like model-
based exchange, however, its adoption requires formalization of the role that it should play in 
systems integration, industry-level standardization of transaction messages, and various other 
design issues.  We intend to investigate these issues further in on-going work. 



7. CONCLUSIONS 
This paper discussed architectures for distributed, model-based, integrated systems for 

AEC/FM.  It described the results of a prototype implementation, presented an overall 
reference architecture, and introduced the role of multi-modal architectures and transaction-
based services. 
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