

SYSTEM ARCHITECTURES FOR AEC INTEROPERABILITY

Thomas Froese1, Kevin Yu 2, Kathleen Liston 3, Martin Fischer 4
1 Associate Professor, Department of Civil Engineering, University of British Columbia,

Vancouver, BC, Canada, V6T 1Z4, tfroese@civil.ubc.ca, http://www.civil.ubc.ca/~tfroese/
2 Ph.D. candidate, Department of Civil Engineering, University of British Columbia;

Software Engineer, Timberline Software Corp., 15195 NW Greenbrier Parkway, Beaverton,
Oregon 97006, http://www.timberline.com

3 Ph.D. Candidate, Department of Civil and Environmental Engineering, Stanford University,
Stanford, CA 94305-4020, USA, kathleen@listons.net

4 Associate Professor, Department of Civil and Environmental Engineering, Stanford
University, Stanford, CA 94305-4020, USA, http://www.stanford.edu/~fischer

ABSTRACT: This paper addresses architectures for distributed, model-based, integrated
information systems for AEC/FM. The paper discusses the motivating factors that hinder the
ability of current information techniques to support effective information sharing and
collaborative decision-making. It describes the results of a prototype implementation of a
model-based integrated system, which integrated a 4D-planning tool with commercial
scheduling and estimating applications through a shared, model-based project database.
The paper then presents a typical set of components for integrated systems: a reference
architecture. Finally, the paper describes the benefits of supporting multi-modal
architectures (i.e., the ability to support a wide variety of data exchange paradigms through
the distributed system) and transaction-based services.

KEYWORDS: Distributed Systems, Visualization, Integration, Project Management, 4D,
System Architectures

1. INTRODUCTION
Recent trends in information technologies move us closer to the goal of integrating the

computing tools used throughout architecture, engineering, construction, and facilities
management (AEC/FM)—a long-standing topic of research. These trends include the
explosion of interest and technologies for business-to-business Internet applications and an
on-going maturation of industry data standards such as the Industry Foundation Classes
(IFCs) (Froese et al. 1999). In our research into integrated systems for project management,
we have previously focused on data representation and standards for project information
(Froese et al. 1997) and on visualization environments that allow project stakeholders to
interact with the integrated project information [Schwegler et al., 2000]. These
environments, however, do not support multi-disciplinary interaction and decision-making.

Construction planning decisions usually affect many project stakeholders, from workers
to various subcontractors to project managers to facility users, etc. Hence, coordination of all
these perspectives is critical to maintain smooth progress on a project. Decisions must be
based on many kinds and sources of information (3D CAD models from architects, cost
estimating spreadsheets and construction schedules from the contractor, milestones from the
owner, etc.). Typically, decisions must be made quickly to maintain the pace of a project. We
have observed that, today, no tools help practitioners construct mental models of the focus of C

on
st

ru
ct

io
n

In
fo

rm
at

ic
s

D
ig

ita
l L

ib
ra

ry
 h

ttp
://

itc
.s

ci
x.

ne
t/

pa
pe

r
w

78
-2

00
0-

36
2.

co
nt

en
t

the discussion in a meeting and to develop an understanding of the pertinent problems. Initial
tests have shown that even simple highlighting and overlay mechanisms can help project
stakeholders to focus the attention of meeting participants and explain an issue under
discussion more effectively. Current software tools may support the sharing and representing
of the project information, but do not enable users to relate many kinds and sources of
information to each other.

We contend that integrative environments that enable teams to visually and interactively
relate project information require a variety of data exchange modes and database architecture
components. In recent work, we have begun to address the issue of system architectures for
distributed, model-based, integrated systems for AEC/FM (Gorlick and Froese 1999).
System architecture addresses issues of how an array of software components distributed
across multiple computers can work together to support generation of, visualization of, and
interaction with relationships between project information that are necessary for multi-
disciplinary decision-making. This paper introduces a typical or reference architecture for
such systems. It describes the results from a prototype implementation of this architecture.
Finally, it introduces two specific concepts that we believe to be important to the further
development of such architectures: multi-modal architectures and transaction-based services.

2. MOTIVATION
Construction project teams must consider a wide variety of information when making

project decisions (Figure 1). Much of this information is produced electronically and is visual
in nature, yet teams primarily use paper-based views of project information. These views
often do not communicate critical relationships between project information or adequately
highlight the important and critical information. Consequently, project teams spend far too
much time trying to understand and describe project information to one another and are
unable to leverage existing information to support decision-making and solve problems.
Consider the following schedule review meeting for a major construction project in Southern
California we observed:

general
contractor

steel
cont ractor

concrete
contractor

foreman foreman

construct
docume

construction

ion
nts

schedule

cost estimate

org chart

s

4D visualization

pecs

diagrams

contract

submittal logs

resource
diagrams

equipment
utilization

equipment
utilization

workflow
strategy
through site

turnover
strategy to
operations

procurement
schedule

Does this meet the
milestones in the

contract? How does this
sequence impact productivity?
When do we have access to

this area? Why are you
starting this activity on this

date? What happens
if...?

Figure 1. Even electronic documents require users to relate
project information for decision-making.

On the walls of the conference room are 2D construction drawings and the
project Gantt chart. Each meeting participant has handouts consisting of the
schedule, which contains 8,000 activities, and the meeting agenda.
Participants have brought other types of documents to the meeting such as
'marked-up' schedules, some contract documents, and construction drawings.
The meeting begins with the first agenda item, 'Schedule Comments.’ This
discussion involves the owner asking questions such as: Does the schedule
meet contractual milestones? Do these activities adhere to project
specifications? Why are you finishing this facility on this date? What if we
change this milestone date? What if the equipment is late? Throughout the
meeting, project participants are distracted as they shuffle through the
schedule sheets searching for activities or as they scan the walls searching for
relevant information, trying to understand the schedule and the issues at hand.
Meeting participants come and go. Some leave to get information such as
project specifications or to get updated information. In some cases, a
document is passed around for participants to review. By the end of the
meeting, twenty types of documents have been referred to or used as
participants try to describe, understand, explain, and evaluate the schedule.
Although several problems are noted, and issues or potential solutions
discussed, no problems are resolved during this meeting nor during the
successive three meetings.

All of the information used was available online. Did it support the project team's ability
to make decisions, and did the team effectively utilize the information they produced? No,
since the team was unable to make any decisions and they spent more time trying to describe,
explain, and evaluate the information than using the information to support decision-making.
Our observations of project meetings show that teams spend most of their time on
descriptive, explanative, and evaluative tasks - tasks that support the decision-making process
- and approximately only 10% of the time performing predictive tasks or the critical "what-if"
tasks that lead to better decisions. More importantly, teams rarely completed these predictive
tasks in group settings. When they did, our observations showed that the reliability and
accuracy of those tasks was low since team members often commented that the information
was out of date or that they were uncertain of potential impacts to project activities and
objectives.

Further analysis of such meetings indicates that most of the information that teams need
to perform descriptive, explanative, evaluative, and predictive tasks is currently produced by
project teams. However, project teams cannot leverage existing project information for the
following reasons:
• Focus of information is not shared and project participants are easily distracted and forced

to identify relevant information on their own.
• Views are inappropriate for group use, hindering multi-stakeholder participation.
• Views don't visually communicate critical relationships between project information,

requiring project participants to manually integrate project information.
To address these issues and improve the effectiveness of using information to support

communication and decision making, we are investigating approaches to visual presentation
and integration of AEC/FM project information. The following section describes a prototype
system developed as part of this research.

3. A PROTOTYPE INTEGRATED SYSTEM
A prototype integrated AEC system was implemented for a project dealing with

interactive workspaces and integrated construction systems. This work was carried out by the

authors and other researchers lead by
Martin Fischer at Stanford University’s
Center for Integrated Facility Engineering
(CIFE) collaborating with the Stanford
Interactive Workspaces Project
(Winograd and Hanrahan 2000). A major
objective of this project is to explore the
potential for using advanced, interactive
workspaces (as illustrated in Figure 2—
essentially, meeting rooms equipped with
numerous interactive computer devices
and the accompanying infrastructure to
coordinate their use) to support
construction team activities (Fischer et al.
2000, Liston et al. 2000). This involved
the simultaneous use of several
construction-related software tools to
analyze the effects of changes to construction schedules made during construction site
meetings. This approach requires the ability to share project information among the different
software programs. Exploring this construction system integration was the second major
objective of project. Although the integrated systems approach is not dependent upon the
interactive workspace environment, the workspace technologies research requires a solution
for information integration and this research provides an excellent test bed.

Figure 2. An illustration of the interactive
workspace used for the prototype.

The integrated system developed for this project is illustrated in Figure 3. The system
included three applications: a custom 4D tool (3D CAD plus time visualization), Primavera
Project Planner for scheduling and resource management, and Timberline Precision
Estimating for cost analysis. The data exchanged and stored in a shared database is
structured according to a common schema loosely based on the IFC Release 2.0 model, but
greatly simplified to provide only the data representation required for this prototype. It
contained approximately 10 classes for representing building elements (without geometry),
work plans, work tasks, resources, and costs.

The system uses a three-tiered
architecture (tiered architectures and
the components that make up the
system are discussed in greater
detail in Section 4). The data tier
contains components that read and
write, which data structured
according to the common schema, in
both XML files and relational
databases. The middle tier contains
“local model proxy components”
that implement the common schema
objects and expose them to
application adapter components
through a COM interface. The
application tier contains the
applications themselves and
adaptors that map the applications’
data to the local model proxy

Data-
Server Project Model

Database

IFC
Model Proxy

Timberline
Precision
Estimating

Adaptor

IFC
Model Proxy

Primavera
P3

Scheduling

Adaptor

Figure 3: Components of a prototype distributed
project management system.

IFC
Model Proxy

4D CAD

Adaptor

components. The adaptor component for the 4D tool is implemented within the source code
of the application, and allows import and export of building objects, scheduling tasks, and
relationships from building objects to tasks. The adaptor component for Primavera is
implemented as a stand-alone utility that maps schedule task and resource information from
the shared project model in and out of Primavera's COM API (application programming
interface). The adaptor for Timberline is a stand-alone utility that maps building component,
schedule task, and resource information from the shared project model into Timberline cost
estimating assemblies, through a Timberline COM API, to create an estimate within the
Precision Estimating application.

The prototype was fully implemented and used to conduct a test-case scenario of a
hypothetic schedule review meeting based on an actual large construction project in Southern
California,. A contractor realizes that the original construction schedule does not provide
adequate time for equipment testing after a lagoon area is filled with water. Therefore, the
construction operations for the lagoon base will have to be accelerated. During construction,
however, the congested site necessitates that the lagoon area be used for material laydown
and crane working areas. Thus, the acceleration of the lagoon construction had to be
carefully planned and coordinated among numerous work groups.

At the beginning of the scenario, the three construction planning applications (4D tool,
scheduling, and estimating) and the common project database were all synchronized to the
current construction plan. The analysis of the proposed change began with changes made
inside the scheduling application to the number of crews assigned to the lagoon base
construction activities. This resulted in a revised and accelerated construction schedule. The
revised schedule dates and resource assignments where then exported from the scheduling
tool to the project database. Next, the new project information was read out of the project
database and used to create an updated cost estimate, which could be compared with the
initial estimate (although the building components and activities were the same, the addition
of extra crews had been accompanied by a slight decrease in productivity, so the overall cost
was somewhat higher). Finally, the new schedule information was read from the project
database into the 4D-planning tool, so that the new construction sequence could be carefully
analyzed for adverse work interactions.

The results of this prototype showed that the basic approach worked well, but that many
specific system design and implementation issues must be addressed in detail before the
system could approach a practical solution. To further pursue this work, we have defined a
reference architecture model for distributed systems.

4. A REFERENCE ARCHITECTURE FOR DISTRIBUTED, MODEL-BASED
INTEGRATED SYSTEMS

4.1. A Tiered Reference Architecture
As a foundation for discussions of system architecture issues, Figure 4 illustrates a set of

software components for a distributed, model-based, integrated system for AEC/FM. These
components describe a typical—or reference—architecture, yet a wide range of variations is
both possible and required, as discussed later in this paper. This particular architecture is our
interpretation of emerging standard practice for distributed systems as we believe that it
should be applied within the AEC/FM industry (i.e., it is intended to reflect a “best practice”
architecture rather than an innovative one). The architecture is organized into three logical
tiers: the application or presentation tier contains application programs and related user-
centric components; the business objects or middle tier has two main roles—bringing the data
and services of the distributed system to the local applications and implementing business
logic processes; and the data tier handles the persistence of project model data. Figure 4

shows these logical layers residing on
two or more physical computer
systems: a user’s workstation and one
or more central servers. This is but
one example of numerous possible
configurations (For example, all
components could be implemented on
a single workstation; web-based
applications could be implemented on
central servers with only a web
browser on a user’s workstation; or a
local model proxy could be
implemented on a local area network
server for shared use throughout a
small workgroup—alternative

Section 5).
configurations are discussed further in

4.2. System Components
Typical components are as follows:
• Applications: Users interact with

the system through application
programs: typically legacy
applications for AEC/FM such as
CAD, estimating, or scheduling
applications, etc. These
applications typically maintain their
own data sets in addition to the
information shared through the
integrated system. Additionally, they can be new application classes specifically designed
to work with the integrated system, or lightweight client interfaces to server-based
application (such as browser interfaces to AEC services offered by Internet portal sites).

Data Tier

Business
Objects/
Middle Tier

Workstation

Application

Local Model
Proxy

Adaptor

Servers

Data-
Server

Project Model
Database

App
Data

= Programming Interface

= Services

Local Model
Cache

Business
Objects

Figure 4. A reference architecture for a distributed,

model-based, integrated system

Applications/
Presentation
Tier

• Adaptors: The data and operations contained within any application must be mapped to
the shared data and operations available within the integrated system. This mapping is
carried out by an application-specific adaptor software component. Depending upon the
nature of the application, the adaptor may be encoded within the application itself, may be
an add-on or macro within the application, or may be a separate program that interacts
with the application through an application programming interface (API) or operates on
the application’s data files.

• Local Model Proxies: The functionality or services available to participating applications
through the distributed system are typically implemented on remote servers and made
available to local applications through software components on users’ workstations. This
can be thought of as a local copy or proxy for the shared project model (see the description
of “Webtop servers” in Lottaz et al, 2000). The local model proxy component, then,
exposes the distributed information services to client applications, and handles the work of
communicating and coordinating the local data with the distributed servers.

• Business Object Components: An important concept of distributed systems technology
is the role of business objects: centrally deployed software components that implement
fundamental logic or processing common to all of the applications that use the data. For
example, this logic can handle a great deal of the data validation checking and the

propagation of the effects of changes to one data object to other related data objects. We
know of no AEC-specific, currently available systems that make business object services
available to outside applications, and we believe that the vast majority of AEC/FM
business logic will continue to reside within applications for the near future. However, we
are aware of systems currently under development that could provide AEC business object
services, and generic e-commerce-support products (such as Microsoft’s Biztalk server1)
or standards from other industries (such as the RossettaNet Networked Application
Protocols2), can be described as business object components. As business object
approaches emerge, they will fit well within the reference architecture. We have shown
them here as a distinct component that resides on servers, in-between the data components
and the local model proxies. However, business objects may well be implemented within
any of the other components by adding additional logic processing to those component’s
objects.

• Data Components: Various data components are responsible for maintaining the shared
project model. A typical configuration, as in Figure 4, involves a central database and data
server component that interacts with model proxy components across an Internet/Intranet
connection. Alternative configurations include distributed data sources, where the central
database is replaced with numerous, distributed, heterogeneous data sources; and
approaches that rely on file exchange between model proxies with no central database.

4.3. System Features
Some key features of these components include the following:
• Services: The distributed system’s functionality can be described as various services that

are offered to the participating applications. Examples include basic access to shared data,
data set management (e.g., checking data sets in and out of central repositories, object
versioning support, data security, etc. Each service is implemented in one or more of the
components, and each component implement one or more services.

• Programming Interfaces: An important issue in the system design is the specification of
the programming interfaces or protocols used between components. Some of the critical
interface points for distributed, model-based systems are indicated in Figure 4 with
diamond symbols. Numerous technologies exist to provide partial solutions, such as
COM, CORBA, XML, SDAI, etc. These generic technologies, where used, must have
AEC/FM-specific solutions implemented on top of them.

• Schema: Each of the software components shown in Figure 4, as well as each of the
interfaces between components, requires an underlying schema or data structures for
representing project information. Generally, the middleware and data layer components
use industry standard schema, such as the IFCs, while the application layer uses
application-specific schema. Various components, and particularly the Adaptor, must map
information between different, but related, schemas.

4.4. Distinctive Characteristics
None of the requirements or characteristics for distributed systems may be unique to the

AEC/FM industry, but a number of characteristics differ from “typical” distributed systems,
and this combination of distinctive characteristics may well be unique to the AEC/FM
industry. The following are a few of these characteristics:
• Complex Data: AEC/FM projects are complex, and

so too are the data structures
(schema) required to represent these projects. This is particularly true for the technical

1 http://www.microsoft.com/biztalk/
2 http://www.rosettanet.org/

project information (e.g., CAD and other building product data), but also applies to
AEC/FM project management data (e.g., schedules, estimates, quality plans, etc.) and
commerce data (e.g., purchasing transactions, contracts, etc).

• Large Data Sets: Project data sets such as building product models are very large. This
fact alone means that an approach which involves applications accessing all required data
from remote repositories on demand (i.e., as in typical Web applications) is likely to be
infeasible. Rather, a more advanced combination of coordinated centralized and
decentralized data sources is required.

• Reliance on Legacy Applications: The previous two characteristics and other factors are
likely to lead to an ongoing reliance on current, desktop applications (which we’ll refer to
legacy applications), rather than a rapid adoption of new, web-based tools for most
functions.

• Emerging Data Standards: Although the nature of the Internet revolution was not
commonly anticipated even five or ten years ago, AEC/FM researchers and developers
have maintained a long-standing recognition of the need for data exchange standards to
support system interoperability. A number of significant efforts have been under
development for some time (e.g., STEP, IFC’s, aecXML). To date, these standards have
had little impact on either traditional or Internet-based integration, but they will become
increasingly important as the scope of Internet-driven interoperability increases.

• Organizational Challenges: AEC/FM projects involve large numbers of small
companies collaborating for short project lifecycles. For distributed collaborative systems,
this places a very high premium on minimizing systems’ “overhead” and in developing
industry-wide solutions.

5. MULTI-MODAL ARCHITECTURES
As discussed, many variations and alternatives to the reference architecture are possible

for the overall configuration of components. Not only are they possible—we contend that it
is necessary for a distributed AEC/FM system to support a wide variety of data exchange
modes. This section presents a series of typical AEC/FM data exchange scenarios (use cases)
that we have developed to illustrate the need for a multi-modal solution. For each mode, we
discuss briefly the variations made to the reference architecture to support this mode.

5.1. File-Based Data Exchange
Use Case 1: A building product model is exported as an IFC file from the CAD system in

which it was created.
Use Case 2: An IFC file representing a building product model is read as input to an

energy analysis package or to a 4D construction-planning tool.
Data Exchange Mode: Although the notion of distributed integrated systems nominally

involves “on-line” access to a shared project database, the most common mechanisms for
importing and exporting IFC data today involves file-based data exchange. This mode can
be fully supported by treating the data source component as a file, the contents of which are
exposed to an application adaptor through a model proxy component (see Figure 5). While
it’s important to support this mode because of its prevalence among today’s limited set of
IFC-enabled tools, file-based data exchange has many shortcomings compared to database
approaches.

This mode was implemented in the prototype system described above since each of the
applications, working through the model proxy component, could import and export data
sets as XML files. This work well for many purposes, but it provides no mechanisms for
the output of one application to be “merged into” the output from another application. This

was a severe limitation since the cost estimating required data from both the 4D viewer and
the schedule applications.

Workstation

Application

Local Model
Proxy

Adaptor

App
Data

XML
File

Workstation

Application

Local Model
Proxy

Adaptor

App
Data

Figure 5. Architecture for file-based data exchange

 Workstation

Servers

Data-
Server

Project Model
Database

Web-Server-
Based

Application

Local Model
Proxy

Adaptor

App
Data

Web Browser

Figure 6. Architecture for server-
based applications

5.2. Coarse-Grained Data Exchange
Use Case 1: A complete building product model is exported from the CAD system in

which it was created, across an Internet connection, into a shared project database, where it
is available for other use by other applications.

Data Exchange Mode: Applications access data in “large chunks”, or collections of
many objects. These collections may correspond to complete models, user-defined objects
collections, or the results of queries or stores procedures. This mode is associated with
relatively large data sets and/or slow connections.

The prototype implemented this mode since each application, working again through the
model proxy component, could import and export its entire data set to a central relational
database. This approach offered very good functionality, but our implementation (an initial
“rapid prototype”) exhibited very poor performance for the scenario (the scenario involved
approximately 2,000 building components and a total of approximately 9,000 objects).
None of the other exchange modes described below were implemented in the prototype.

5.3. Fine-Grained Data Exchange
Use Case 1: A change-order management tool reviews the status of change orders stored

within a shared project database.
Use Case 2: When an object is selected in a CAD tool, it can show the object’s cost data

drawn from a remote project database.
Use Case 3: A “project explorer” interface allows a construction manager to browse and

selectively edit all information stored in a shared, model-based project database.
Data Exchange Mode: Applications access data in “small chunks” (individual objects or

small collections of objects). This mode is suitable for relatively small datasets and/or fast

connections. It supports both traditional applications and “thin-clients”, or applications that
provide little more than user interface functionality, as in the third use case above.

5.4. Off-Line/Message-Based Data Exchange
Use Case 1: An engineer sends a set of design changes to the architect as an e-mail (or

similar type of) message.
Use Case 2: An inspector records inspection results into a tool on a palm-based

computer, and the results are incorporated into the project database once the device is
docked on the inspector’s desktop.

Data Exchange Mode: Applications send datasets as messages to be delivered to a
recipient at some future time. The connection from the local model proxy to the data layer
is through a queued message system.

5.5. Server-Based Applications
Use Case 1: A construction manager uses a web browser to review the status of a

project’s subcontract packages on an Internet portal site’s (i.e., a construction “.com”
company’s) project management system, which maintains a model-based project database.

Data Exchange Mode: Although this mode provides a marked departure from traditional
desktop-based applications, it still fits well within the general distributed-system
architecture. The primary difference is that all of the components shown in the typical
architecture reside on servers, with the exception of the user interface elements of the
application, which are separated out and delivered to the user’s computer through Internet
HTTP capabilities (see Figure 6).

5.6. Application-To-Application Data Exchange
Use Case 1: An estimating system interacts directly with a CAD system, without going

through a project database.
Data Exchange Mode: This variation, which can be applied to all of the above

alternatives, involves applications communicating directly with one another rather than
with a common project database. This mode fits within the reference architecture by
simply allowing individual applications to be treated as data sources as well as data clients,
and implementing the data source API’s against the applications.

5.7. Multiple Data Repositories
Use Case 1: A “project management desktop” applications, which gives users access to a

wide array of project information, maintains a building’s 3D geometry in a local file,
accesses cost data across a local area network from a repository on a corporate intranet, and
gets information about the project status directly from a remote project repository. All of
the data sources are synchronized as needed.

Data Exchange Mode: data repositories can be arranged in “chains”, where an
application acts as a client of a “satellite” repository which, in turn, acts as a client of a
centralized repository. Data management and transaction services (such as loading,
locking, caching, and synchronization of data sets) operate in a similar manner between
each link in the chain.

6. TRANSACTION-BASED SERVICES
Currently, data exchange among computer applications within the construction industry

relies almost exclusively on document exchange, where datasets are exported as some type of
document file from one application and imported into another. In contrast, our research is
focused on model-based data exchange, wherein collaborative applications read and write

objects to a shared project-model repository. Although model-based integration continues to
be the cornerstone of our approach to data exchange among construction applications, it
exhibits many shortcomings (Eastman 1999). For example, numerous model-management
issues remain unresolved (such as extensibility of models, supporting different application
models and perspectives, version management, etc.), model-based exchange has little to offer
at the level of integrating user interaction issues, and there are many situations where “shared
models” are simply not desired. A simple example is a bank transfer, where a message
requesting the transfer is sent from one account to another—there is no sharing of complete
account information between the two accounts. This approach of collaboration through
transactions among applications addresses many shortcomings of model-based data
exchange.

Document-Based Integration

App App App

Doc Doc

Model-Based Integration

App App App

Model

Transaction-Based Integration

App App App

Message Message

Figure 3: Alternative integration paradigms.
Transaction-based collaboration involves the broadcasting of messages from one

application to other applications. Messages include some type of instruction or some
notification that an event has occurred. Messages may include datasets and may result in a
response from receiving applications. Examples of transaction messages include notification
that data has changed, exchange of specific datasets, requests to select and highlight objects
in target application, requests to switch to certain views or perspectives, etc.

Transaction-based integration also plays an important role with respect to emerging
trends in the structure of construction information technology. Traditionally, individual
computer applications encompassed three main responsibilities or “layers”: representation
and management of domain data, application functionality and logic, and user
interface/information presentation. Model-based integrated systems move much of the
responsibility for the data layer away from individual applications and into distributed model-
based project repository mechanisms, yet this provides little support for integration of the
logic or user-interface layers. Transaction-based integration has no such limitation;
transactions can relate to data, logic or user interface issues. Thus, transaction-based
integration provides support for the interactive workspace issues (Fischer et al. 2000, Liston
et al. 2000) that are missing from model-based approaches. Moreover, current trends in
information technology systems indicate greater separation of the application logic and user
interface layers, as in the systems offered by emerging e-commerce providers for the
construction industry, where data and application logic components reside on service-
providers’ central systems while user interaction occurs through web-based interfaces. As
application logic and user interface layers are split apart, the need for standard mechanisms of
communicating both data and messages between components increases: a need that is
addressed by transaction-based integration.

Transaction-based integration doesn’t replace model-based integration, but could provide
an important additional service offered by a distributed system architecture. Like model-
based exchange, however, its adoption requires formalization of the role that it should play in
systems integration, industry-level standardization of transaction messages, and various other
design issues. We intend to investigate these issues further in on-going work.

7. CONCLUSIONS
This paper discussed architectures for distributed, model-based, integrated systems for

AEC/FM. It described the results of a prototype implementation, presented an overall
reference architecture, and introduced the role of multi-modal architectures and transaction-
based services.

Acknowledgements: We gratefully acknowledge support for this work from the Natural
Sciences and Engineering Research Council of Canada, the Center for Facility Engineering
and UPS Fellowship at Stanford University, and Timberline Software Corporation.

REFERENCES
Eastman, C.M., “Information Exchange Architectures For Building Models, Information

Exchange Architectures”, Durability of Building Materials and Components 8, Vancouver,
May 1999. pp. 2139-2156.

Fischer, M., Liston, K., Kunz, J. (2000) “Requirements and Benefits of Interactive
Workspaces in Construction,” submitted to the 8th International Conference on Computing
in Civil and Building Engineering, Stanford, USA.

Froese, T., et al. (1999) "Industry Foundation Classes For Project Management—A Trial
Implementation", Electronic J. of Information Technology in Construction, Vol.4, 1999,
pp.17-36. Available online at http://itcon.org/1999/2/

Froese, T., Rankin, J.,and Yu, K. (1997). “Project Management Application Models And
Computer-Assisted Construction Planning In Total Project Systems,” Int. J. of Construction
Information Technology, Vol. 5, No. 1, Summer 1997, pp.39-62.

Gorlick, A. L., and Froese, T. (1999). “A Prototype Distributed CIC System Based On IAI
Standards”, Durability Of Building Materials And Components 8. Vancouver, May 1999.
Vol. 4, pp. 2171-2179.

Liston, K., Kunz, J., and Fischer, M., (2000). “Advanced Human-Computer Interfaces for
Construction Planning,” submitted to the 8th International Conference on Computing in
Civil and Building Engineering, Stanford, USA.

Lottaz,C., Stouffs, R. and Smith, I. (2000). “Increasing Understanding During Collaboration
Through Advanced Representations”, Electronic J. of Information Technology in
Construction, Vol.5, pp.1-24. Available online at http://www.itcon.org/2000/1/

Schwegler, B., M. Fischer, and K. Liston. New Information Technology Tools Enable
Productivity Improvements.in North American Steel Construction Conference, AISC,.
2000. Las Vegas.

Winograd, T. and Hanrahan, P., (2000). Stanford Interactive Workspaces Project. Web site
available at http://www.graphics.stanford.edu/projects/iwork/ Accessed Feb. 2000.

	INTRODUCTION
	MOTIVATION
	A PROTOTYPE INTEGRATED SYSTEM
	A REFERENCE ARCHITECTURE FOR DISTRIBUTED, MODEL-BASED INTEGRATED SYSTEMS
	A Tiered Reference Architecture
	System Components
	System Features
	Distinctive Characteristics

	MULTI-MODAL ARCHITECTURES
	File-Based Data Exchange
	Coarse-Grained Data Exchange
	Fine-Grained Data Exchange
	Off-Line/Message-Based Data Exchange
	Server-Based Applications
	Application-To-Application Data Exchange
	Multiple Data Repositories

	TRANSACTION-BASED SERVICES
	CONCLUSIONS
	REFERENCES

