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ABSTRACT 

Life-Cycle Cost analysis can significantly assist in making investment decisions. Several recent 
studies have recognized the potential benefits of Life-Cycle Cost analysis and call for use of such 
analyses when making infrastructure investments, including investments in bridges.  The Life-Cycle 
Cost of a bridge consists of the total investment throughout the life of the bridge.  This includes the 
initial construction cost, repair and rehabilitation costs, and all maintenance costs. The ability to 
accurately determine the Life-Cycle Cost of a bridge will help agencies evaluate the asset value of 
existing bridges, make better decisions on the design and construction of new ones, and choose 
improved methods and approaches for rehabilitating existing structures.  Research has shown that 
timely maintenance, repair, and rehabilitation can lower the Life-Cycle Cost of a bridge. However, this 
is a complex and nonlinear problem, and previous studies have failed to develop a satisfactory model. 

 One effective technique for solving nonlinear problems with complicated functions is an Artificial 
Neural Network. A neural network is a powerful data-modeling tool that captures and represents 
complex input/output relationships. Using a set of input and output data belonging to a particular 
problem, a neural system can be trained to predict outcomes for new versions of the same problem. 
Accordingly, an extensive set of data (bridge dimensions, age, initial cost, and Life-Cycle Cost) for 14 
Chicago bridges was used to quantify the degree of success that could be achieved with this model. 
Sixty percent of the data was used as input to train the model and the remaining forty percent was used 
to assess the success of the model for predicting the Life-Cycle Cost. The results achieved were 
encouraging and suggest that the neural network model is a promising tool for predicting the Life-
Cycle Cost of a bridge. 
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1. INTRODUCTION 

The most critical decisions that significantly affect the Life-Cycle Cost (LCC) of infrastructure 
projects occur in the early stages. For example, it is more beneficial to correctly choose the optimum 
bridge type than to choose the optimum construction process or repair method. The ability of a bridge 
to provide service over time requires appropriate maintenance, repair, and rehabilitation (MRR). 
Therefore, the investment decision should consider not only the initial capital cost, but also all future 
activities that will be required to keep that investment serviceable for the public. In the final analysis, 
it is the cumulative value of the initial capital cost, the repair and rehabilitation costs, and the annual 
maintenance costs that is of interest. Our studies show that the maintenance and rehabilitation costs, as 
a percentage of the initial cost, are reasonably similar for many, but not all, types of bridges during 
approximately the first 65 years of their service life, after which these costs increase significantly. The 
challenge facing bridge managers and the purpose of LLC analysis is to specify a set of economical 
actions and their timing during the life of a bridge to achieve the 50- to100-year service life that many 
bridge management professionals feel is an appropriate target for this major public investment 
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(NCHRP 2003). A large amount of research has shown the success of Artificial Neural Networks 
(ANN) to solve complicated nonlinear mathematical construction and transportation problems, and 
this methodology will be employed here to illustrate its applicability to describe the complex 
relationship between input/output variables from a set of life cycle cost data for fourteen Chicago area 
bridges. 

 

2. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) are extremely useful in such diverse fields as mathematics, 
chemistry, physics, engineering, economics, and finance, as well as infrastructure and construction 
management. In general, any field that poses complex problems of classification, prediction, or control 
may benefit from an ANN, and conversely, every application of an ANN provides an opportunity to 
further understand how it successfully solves very difficult problems (Principe 2000). In essence, a 
neural network is a data-modelling tool that performs intelligent tasks comparable to those performed 
by the human brain to formulate complex relationships between input and output data, as illustrated in 
Figure 1. The model is “trained” by using a set of input and output data belonging to a particular 
problem. Then, if new input data representative of the same problem, but not in the training set, are 
entered into the system, the ANN can predict outcomes without any specific programming relating to 
the category of events involved. The true power and advantage of neural networks lies in their ability 
to represent both linear and nonlinear relationships and in their ability to “learn” these relationships 
directly from the data being modelled. 

 

                      

 

                             

Figure 1:  Analogue for architecture of a biological and ANN neuron (Principe 2000). 

 Since traditional linear models are inadequate for modeling nonlinear responses, the most common 
neural network model is the multilayer perceptron (MLP). This type of neural network is known as a 
supervised network because it requires a desired output in order to learn. The goal of this type of 
network is to create a model that correctly maps the input to the output using historical data so that the 
model can then be used to produce the output when the desired output is unknown. The MLP and 
many other neural networks learn by using an algorithm called back propagation. With back 
propagation, the input data are repeatedly presented to the model and with each presentation the output 
is compared to the desired output and an error is computed. This error is then fed back (back 
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propagated) to the model and used to adjust the weights such that the error decreases with each 
iteration. This process is known as "training” the model. The back propagation algorithm is a gradient 
descent method that minimizes the Mean Square Error (MSE) between the actual and target output of 
a multiplayer perceptron. The nonlinear activation functions used in the network are the Sigmoid 
function, sigmoid(x) = (1-e-x)-1, and the Hyperbolic Tangent function, tanh(x) = (ex - e-x ) / (ex +e-x) 
(Ham 2001). 

 

3. GOALS AND OBJECTIVES 

The total Life-Cycle Cost (LCC) of a bridge is the cost required to build, maintain, repair, and 
rehabilitate the structure during its useful life. Historical cost data for a variety of geographically 
distributed bridges were collected and analyzed to determine the total LCC for these bridges, and it 
was determined that, for the same useful life, the LCC can be quite different for different types of 
bridges. Hence, only bridges of one specific type will be included in this study and ANN will be used 
to determine their LCC.  A multilayer perceptron (MLP) is a neural network that has more than two 
layers (input layer and output layer), termed “hidden layers,” which are between the input layer and 
the output layer (Ham 2001). Each hidden layer contains several neurons with structures as shown in 
Figure 2. It is common for different layers to have different numbers of neurons, and MLP is used to 
solve nonlinear problems in the neural networks. In some complicated problems, it is possible that a 
network will need more than one hidden layer. Figure 3 illustrates a typical example of a trained 
neural network in which the input parameters are the length, width, age, and the initial cost of various 
bridges and the output is the LCC. A random number generator is used to randomize the order of the 
data points for training and testing the neural network so that it learns the input/output mapping 
independent of a specific pattern of input samples. 

 

Figure 2: Multi-layer neural network and architecture of a neuron. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Win
Output layer 

X1

Xn

Input layer 
Wji

X2

: 
. 

: 
. 

: 
. 

Xn

Xn

Xn

Σ ( ) W2 

W1 

Wn 

Y

b



Proceedings of the CIB W78-W102 2011: International Conference –Sophia Antipolis, France, 26-28 October 
 

 

 

 

Figure 3: Conceptual architecture of the neural network for evaluating the Life-Cycle Costs of bridges. 

 

4. CHICAGO MOVABLE BRIDGES 

Compared to other big cities in the world, Chicago has an unusually large number of movable bridges. 
One of the most popular types, the double-leaf trunnion bascule bridge, evolved from earlier types of 
movable bridges, including swing bridges and rolling lift bridges. Alexander Von Babo, a city bridge 
engineer, patented the internal rack in 1911 and thereby eliminated the need for through-trusses by 
placing the rack below the bridge deck. In 1913 Edward H. Bennett, a consulting architect to the 
Chicago Plan Commission, started to work with engineers to improve the artistic quality of Chicago 
bridges. These efforts resulted in extensive revisions to the shape of the trusses, the configuration of 
the operator houses and pit walls, and the ornamental detailing of sidewalk railings, light fixtures, and 
other decorative metal elements. This new design was heavily influenced by Parisian architecture, 
which, at the time, was considered the model for urban design.  These innovations defined the second 
generation Chicago-type bascule bridges, which are those built between 1910 and 1930. Although 
Hopson (1994) classified the Chicago-type trunnion bascule bridges into four generations that are 
characterized by the evolution of their design and construction, only the 14 second generation bridges 
given in Table 1 are included in this study.  In the description of these bridges, the deck widths given 
are current values, which may be different from those of the original bridges due to reconstructions.  

 
   Structural Deck  Initial 

No. Bridge Year Length Width  Cost 
    Built (feet) (feet)  ($) 

1 Washington St. Bridge 1913 263 36 238,288 
2 Grand Ave. Bridge 1913 270 60 195,141 
3 Chicago Ave. Bridge 1914 291 37 255,583 
4 Webster Ave. Bridge 1916 287 38 245,721 
5 Monroe St. Bridge 1919 271 38 420,875 
6 Franklin-Orleans Bridge 1920 320 38 827,487 
7 Madison St. Bridge 1922 283 40 1,186,569 
8 Adams St. Bridge 1926 250 64 1,065,644 
9 100th St. Bridge 1926 326 40 930,948 

10 106th St. Bridge 1928 349 38 907,144 

11 LaSalle St. Bridge 1928 347 57 1,318,801 
12 Clark St. Bridge 1929 346 38.5 1,331,020 
13 Roosevelt Rd. Bridge 1929 257.5 90 1,195,449 
14 Wabash Ave. Bridge 1930 345 60 1,568,499 

 
Table 1:  Second Generation Chicago-Type Bascules Bridges included in this study. 
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 The data for these bridges were collected and itemized by year from the files of the Chicago 
Department of Transportation and the Chicago Public Library (Zhang et al 2008). The MRR costs for 
the years from 1900 to 1978 were quite complete except for a few years. For the years between 1978 
and 2005, the major repair and rehabilitation costs were collected from the capital improvement 
reports. In many cases, no detailed maintenance costs were available for individual bridges, but lump 
sum data for all city bridges were available and “good faith” distributions were made based on the best 
historical information that could be determined.  

 

5. IMPLEMENTATION  

The length, width, age, and initial cost are considered as the inputs to the neural network and Life-
Cycle Cost (LCC) is the output. A random number generator was used to enter the data with known 
amounts of LCC for training and testing the network. By so doing the training process will not follow 
a regular routine and thereby avoid any specific pattern. MATLAB programming, as illustrated in 
Figure 4, was used with the neural network toolbox to train and test the network. Several networks, 
each with a different number of neurons in their hidden layers were trained to find the optimal number 
of neurons in the hidden layer. As seen in Table 2, the network with 15 neurons in its hidden layer has 
the minimum amount of error and is thus the optimal network, as shown in Figure 5.  

 About 800 sets of data were available for the 14 bridges over a period of approximately 60 years. 
Sixty percent of the data were randomly used as input to train the model and the remaining forty 
percent were used to assess the success of the model for predicting the LCC. After running the 
networks with the various architectures, the following determinations have been made: 

 A multi-layer network with one hidden layer using the back propagation with momentum 
method has the least probability of getting trapped in a local minimum and offers the best 
convergence speed. In other words, it minimizes the probability that the network will fall into 
a local minimum. 

 A comparison of batch learning to online learning shows that online learning improves 
convergence speed (Principe 2000). 

 The best activation function in the hidden layer and the output layer is the hyperbolic tangent.  

 The optimal number of neurons in the hidden layer is 15, as shown in Figure 6. 

 A stopping criterion of 100 epochs is satisfactory.  

 Therefore, a network with a (10-15-1) topology and other previously mentioned specifications 
is the best network architecture and achieves the highest convergence speed. 

 

 
 

Figure 4: Architecture of the best neural network to train and test. 
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Figure 5: Graph illustrating the best neural network. 
 

No. Number of Hidden nodes MSE 

1 6 0.19647 
2 8 0.08576 
3 10 0.05359 
4 12 0.00729 
5 15 0.00111 
6 18 0.05399
7 20 0.38576 

 
      Table 2: Training and testing results for different numbers of neurons. 

 

 

    
  Figure 6:  Chart used to determine the optimal number of neurons in the hidden layer. 
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6. CONCLUSION 

The results achieved were encouraging and support the premise that the neural network model is a 
promising tool for predicting the Life-Cycle Cost of a bridge. The most important advantage of ANN 
is its innate ability to handle complex and nonlinear problems of the type characterized by most 
infrastructure facilities.  

 

REFERENCES 

Ham, F. M. (2001). Principles of Neurocomputing for Science and Engineering, Tata McGraw-Hill. 

Hopson, H. K. (1994). The Comprehensive Guide to the Bridges of the Chicago River. University of 
Illinois-Chicago, Chicago, Illinois. 

National Cooperative Highway Research Program, (2003). Bridge Life-Cycle Cost Analysis. NCHRP 
Report 483. 

Principe, J.C. (2000). Neural and Adaptive Systems: Fundamentals Through Simulation. John Wiley 
& Sons. 

Zhang, Y., Novick, D.A., Hadavi, A., and Krizek, R.J. (2008). Whole Life-Cycle Cost for Chicago-
Type Bascule Bridges. Cost Engineering, 50(4), 28-32. 

 


