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ABSTRACT 

Energy consumption in commercial buildings amounts to 19% of total energy consumption in the U.S., and is 

expected to continue increasing in the foreseeable future. Heating, Ventilation, and Air Conditioning (HVAC) 

systems are major energy consumers in commercial buildings, and they are usually controlled in a way that all 

thermal zones in a building are considered as occupied during operational hours. This control strategy, however, 

results in energy waste by conditioning the unoccupied thermal zones. This paper employs a bimodal demand 

response controller, which is based on real-time occupancy, for reducing HVAC energy consumption. The 

controller employs an artificial neural network based occupancy detection model to monitor occupancy in thermal 

zones of a building, and controls HVAC based on real-time occupancy to save energy while maintaining occupant 

thermal comfort. Based on real-time occupancy and time of the day, the proposed controller operates the HVAC 

system in three modes: occupied mode, vacant mode, and off-hour mode, each with distinct temperature settings. 

During the three weeks of the test, the occupancy model yielded an occupancy detection accuracy of up to 93.6%, 

providing reliable support to the occupancy driven HVAC controller. The daily percentage energy savings varied 

between -0.2% and 14.4%, with an average of 5.3%. Higher daily energy savings were observed in days when the 

building was less occupied. Outside temperature was found to be linearly correlated with the daily energy savings. 

 

Keywords: HVAC, commercial building, occupancy detection, demand response, building energy reduction, 

energy conservation 

1. INTRODUCTION 

It has been widely accepted that building occupancy patterns have significant impacts on buildings’ energy 

consumption (Lindén et al. 2006). However, centralized Heating, Ventilation, and Air Conditioning (HVAC) 

systems, widely used in commercial buildings, usually follow a fixed schedule, based upon buildings’ design 

occupancy (Dong et al. 2011). Due to the lack of ability to respond to dynamic occupancy by centralized HVAC 

systems, energy is often wasted in maintaining a fixed temperature set point in vacant indoor spaces. Typically, 

operational settings are dictated according to assumed occupied and unoccupied periods of the day (e.g., occupied: 

9:00 - 18:00) and do not consider when buildings are partially occupied. However, observations of actual building 

occupancy have found average occupancy in office buildings to represent at most a third of their design 

occupancy, even at peak times of day (Brandemuehl and Braun 1999). This implies that a major portion of HVAC 

energy is not used efficiently for maintaining desired indoor climate. The total amount of energy waste could be 

significant, considering the fact that HVAC systems are responsible for approximately 19% of total energy 

consumption in the U.S. (DOE 2011). 
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Motivated by the significance of such energy waste, a range of research initiatives have been undertaken to 

optimize HVAC controls based on occupancy information (Lo and Novoselac 2010; Zhu et al. 2000; Zhu et al. 

2000). In terms of cooling and heating, prior research has reported that substantial energy savings could be 

achieved by not maintaining the fixed temperature set point in vacant thermal zones (Henze et al. 2004; Ma et al. 

2011; Nghiem and Pappas 2011). Instead, the temperature set point could float within a certain range depending 

on the occupancy of the zones (Gao and Whitehouse 2009). For instance, Energystar is a self-programming 

thermostat that could automatically create setback schedules by sensing the presence of occupants through a 

motion sensor and reed switch. This thermostat was tested in residential houses and could reduce cooling and 

heating demand by up to 15% (EnergyStar 2013). Another example is the Telkonet SmartEnergy control system 

(Telkonet SmartEnergy 2010). The system allowed the temperature to vary in a wider range in vacant residential 

houses and, after occupants returned, the temperature was adjusted to its normal range within a lag time. The lag 

was determined based on tolerable recovery time set by the occupants, building type, HVAC type, and outside 

weather. Agarwal et al. (2010) proposed to set back the temperature set point in vacant zones. In a simulation, 

temperature was maintained at 22.9 0C and 26.1 0C for occupied and unoccupied rooms, respectively. The authors 

reported a 15% reduction of HVAC energy consumption in a mid-sized office building. Research has also been 

done in optimizing switch time step between occupied and vacant modes, in order to avoid too frequent system 

startups while maintaining comfort (Dong et al. 2011) 

In terms of the energy that could be saved by efficient ventilation strategies, several bimodal controllers have 

been proposed and widely tested. This controller sets the ventilation rate to a minimum in vacant spaces, based on 

the building codes, for controlling contaminants and humidity (ASHRAE and Standard 2007), and increases it to 

the designed maximum rate whenever the room is occupied. An exemplary evaluation of this bimodal ventilation 

controller at the building level was presented in (Pavlovas 2004). The ventilation rate was kept at the maximum 

value when the building was occupied; otherwise it was kept at a minimum value. Up to 20% of ventilation 

energy was saved in an office building through simulation. This bimodal control has also proven to be a cost and 

energy efficient alternative to constant air volume control in a number of other research initiatives (Erickson and 

Cerpa 2010; Erickson and Cerpa 2010), and could reduce the ventilation energy in office buildings by up to 50% 

(International Energy Agency 1993). 

2. MOTIVATION 

The majority of prior research on occupancy driven HVAC operations was based on simulations done in building 

energy models. While these research initiatives have extensively explored potential energy savings by integrating 

occupancy in the control logic of HVAC systems, the achievability of the reported energy savings remains unclear. 

Various factors that are impactful on energy consumption may not be accurately modeled, simulated or exposed.  

There has also been a prevailing view that building energy simulations tend to overestimate consumption (Shapiro 

2011). Moreover, all building energy models used in studying occupancy driven HVAC operations were 

calibrated with energy consumption data collected under a building’s normal operations. These models do not 

necessarily reveal and reflect a building’s energy consumption patterns under occupancy driven controllers. These 

limitations call for a real-world building-scale implementation to evaluate the achievable energy savings from 

occupancy driven HVAC controllers. 

In addition, most of prior research relied on assumed or simulated building occupancy, which inevitably 

deviates from the actual occupancy and weakens the reliability of the reported amount of energy savings. In fact, 

building occupancy detection itself is an area that has seen active research in the past decade. Different 

technologies have been proposed for occupancy detection, such as video (Benezeth et al. 2011; Erickson et al. 

2009), CO2 sensors (Nielsen and Drivsholm 2010; Sun et al. 2011), Passive Infra-Red (PIR) sensors (Agarwal et 

al. 2010), communication infrastructure (Melfi et al. 2011), or a combination of different technologies (Meyn et al. 

2009). Despite the exploration of these solutions, large-scale occupancy detection has remained a challenging task 

and has rarely been deployed at building scales for evaluating occupancy driven HVAC operations. 

To address the above challenges, this paper studies the energy implications of a bimodal occupancy driven 

HVAC controller by implementing it in a multi-story test bed building for three weeks. The occupancy of every 

room in the building was monitored in real time during the test period, and used to drive the operation of HVAC 



Proceedings of the 30th CIB W78 International Conference - October 9-12, 2013, Beijing, China 682 

system both at the thermal zone and building levels. This paper represents one of the very few efforts that 

integrate two active research areas, namely building occupancy detection and demand response building 

operations, in a single real-world implementation at a whole-building scale. The results shed light on how much 

energy savings can be achieved by integrating real-time fine-grained occupancy information in HVAC operations, 

especially in warm regions such as the Southern California. The results also highlight the complexity of various 

factors that may impact the achievability of energy savings in a real-world environment. 

3. TEST SET UP 

3.1 Test Bed Building 

The test bed building modeled in this paper is a typical educational office building (Figure 1) on the University of 

Southern California (USC) campus near downtown Los Angeles, California. It is a three-story building with a 

gross area of 3,735 m2, and contains 89 mechanically ventilated rooms including offices, classrooms, conference 

rooms, auditoriums and lobbies. The indoor environment of the building is monitored by 67 wired temperature 

sensors and 50 wireless sensor units. Each wireless sensor unit has a stand-alone single-board microcontroller 

with integrated support for wireless communications, and is comprised of the following sensors: a light sensor, a 

sound sensor, a motion sensor, a CO2 sensor, a temperature sensor, a relative humidity sensor, a PIR sensor, and a 

door switch sensor. The data is automatically queried once every minute, time stamped, and stored in an SQL 

database. The energy consumption by various building systems such as HVAC, lighting, receptacle and 

mechanical is metered and recorded in a Building Energy Management System (BEMS). 

 

 
Figure 1: Test bed building 

 

The HVAC system in the test bed building has a Variable Air Volume (VAV) style. All spaces in the building 

comprise 67 thermal zones, each of which is serviced by one VAV box. A VAV box is responsible for regulating 

the ventilation in the thermal zone with conditioned air, and reheating the air with boiler-supplied hot water if the 

zone needs heating instead of cooling. The conditioned air is supplied to VAVs by Air Handler Units (AHUs) 

using fans and ductwork. There are two AHUs in the building, each servicing one side of the building with similar 

sizes of service areas. AHUs take in outside air, mix it with returned air from the building, and cool down the 

mixed air to 12.8 0C with chilled water supplied by chillers.  

3.2 Field Test Details 

A field test was carried out from March 11 - 31, 2013 on the second and third floors of the test bed, due to these 

floors’ symmetric configurations, the diversity and representativeness in room types, and their coverage by the 

wireless sensor units. The baseline controller was implemented on the west side of the two floors covering 30 

rooms, and the bimodal occupancy driven controller was implemented on the east side of the two floors covering 

37 rooms. The west side and the east side are serviced by different AHUs, and are referred to as the control area 

and the test area, respectively, for the remainder of the paper. Running the two sides of the building with two 

operational strategies concurrently helped offset the impact of outside weather conditions and campus schedules, 

which impacted both areas similarly during the test. 
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3.3 HVAC Controllers 

The baseline HVAC controller implemented in this paper works based on a fixed occupancy schedule. During the 

daytime (6:30 - 21:30 on workdays, and 7:00 - 21:30 on weekends), all thermal zones in the building are assumed 

to be always occupied, and a constant temperature set point (22.8 0C) is maintained by a Proportional Integral 

Derivative (PID) controller, which dynamically adjusts the airflow damper and reheating valve of each zone. The 

bimodal occupancy driven controller, on the other hand, is demand responsive and based on real-time occupancy. 

An occupancy model is developed to monitor the occupancy of each room, and the results are aggregated into the 

occupancy of each zone and used to drive HVAC operations. During the daytime, an occupied mode is enforced 

for occupied zones, where a constant temperature set point (22.8 0C) is maintained by the PID controller. If a zone 

stays vacant for a minimum of 15 minutes, a vacant mode is enforced, where the temperature set point is set back 

to 25.6 0C until it becomes occupied again. Both implemented controllers have an off-our mode, where the HVAC 

system is shut off during the nighttime, and no cooling, heating or ventilation services are provided. 

3.4 Occupancy Modeling 

In order to base the HVAC operations on reliable occupancy information, an occupancy detection model 

developed by the authors (Yang et al. 2013) is used. For each room in the test bed building that has a wireless 

sensor unit, the occupancy detection model inputs values of 12 variables sampled at a one minute-interval, and 

outputs an estimate of whether the room is vacant or occupied at the moment of the sampling. 

The occupancy estimation algorithm is based on a multilayer perceptron neural network, in which the neurons 

are arranged into an input layer, an output layer and one or more hidden layers. Specifically, the inputs are 

readings of different ambient sensors and the output is the occupancy status. When training the model, back 

propagation is used, where an error function is repetitively calculated for each input and an error is propagated 

backwards from one layer to a previous layer. For parameter tuning, the learning rate and momentum (controlling 

the speed of model modification) were set to 0.3 and 0.2, respectively, using a try-and-error method. More details 

of the design and evaluation of this algorithm can be found in (Yang et al. 2013). WEKA v.3.7, a commonly used 

machine learning software, was used to implement the algorithm. After the occupancy of every room is obtained 

by the occupancy detection model, the occupancy of a particular zone is determined by aggregating the occupancy 

of associated rooms. The zone is considered vacant only if all rooms within the zone are vacant. 

4. ENERGY COMPUTATION 

Energy savings from the occupancy driven controller is the difference between the measured energy consumption 

of the zones in the test area to their expected energy consumption. This section details how measured energy 

consumption is computed based on building-level and zone-level meter readings and sensor readings available in 

the test bed, and how expected energy consumption is computed, based on an inverse approached using historical 

energy consumption data. 

4.1 Computation of Energy Consumption 

The cooling capacity, denoted as c (ton), is metered at the building level in the test bed. The embodied energy 

consumption is attributed to the control area (
c

cE ) based on the proportion of air flow volume of control area to 

the total air flow within the building. The cooling energy consumption of the test area (
t

cE ) is calculated the same 

way: 
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afv are the summations of air flow volume of all VAV boxes within the control area 

and the test area, respectively; i

i

afv is the summation of air flow volume of all VAV boxes in the building. A 

total of 0.75 kW of power is required to generate 1 ton of cooling capacity. 

The electrical power, denoted as e (kW), is metered at the building level in the test bed. The total ventilation 

energy consumption is divided between the control area (
c

vE ) and the test area (
t

vE ) following the same approach: 
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The heating energy consumption is calculated based on the hot water usage rate, denoted as h , metered at the 

VAV level. The respective heating energy consumption within the control area (
c

hE ) and the test area (
t

hE ) is 

calculated as follows: 

1.53* * *c c
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where T  is the difference of inlet water temperature and outlet water temperature at the heat exchangers, 

E is the amount of energy needed to raise the temperature of 1 kg of water by 1 0C, and coefficient 1.53 is the 

boiler plant efficiency according to the campus facilities management services. 

4.2 Computation of Energy Savings 

When the HVAC system in the test bed building is operated with the bimodal occupancy control, the energy 

savings can be calculated by comparing the actual energy consumption with the baseline energy consumption, 

both associated with the test area. The actual energy consumption is metered during the test period. The baseline 

energy consumption is estimated based on the actual energy consumption of the control area, and a relationship 

between energy consumption of the test area and that of the control area. The relationship is established based on 

historical energy consumption data, and it is assumed that the relationship would continue to be observed if the 

HVAC system was not operated under occupancy driven controller during the test period. The rationale behind 

this assumption is that both the test area and control area are impacted similarly by various factors such as 

occupant schedules and outside temperature, and that there was no major retrofit in the past two years that could 

significantly change the energy consumption patterns of the test area or control area and hence alter the 

relationship between their energy consumption. It needs to be noted that while running the baseline controller and 

the occupancy controller sequentially in the entire building is a possible alternative approach for validating energy 

consumption, results from this approach would be impacted by changes in occupancy schedules or outside 

weather over the entire test period; therefore, this approach is not adopted in this paper.  

Historical data of energy consumption in cooling, heating and ventilation is collected from the BEMS for the 

periods of March 11-31, 2012 and March 11-31, 2011, and organized on a daily basis. The respective 

relationships of cooling, heating, and ventilation energy consumption are demonstrated as follows: 
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21.284* 1.729 ( 0.9895, 3.557 )t c

c cE E R RMSE kwh      (7) 

 
21.295* 4.034 ( 0.8965, 4.219 )t c

h hE E R RMSE kwh      (8) 

 
21.174* 3.103 ( 0.9374, 3.209 )t c

v vE E R RMSE kwh      (9) 

Where
c

cE ,
c

hE and 
c

vE are the actual cooling, heating and ventilation energy consumption, respectively, of the 

control area, and 
t

cE ,
t

hE and 
t

vE are the baseline cooling, heating and ventilation energy consumption, 

respectively, of the test area. The large 
2R  values and small Root Mean Square Error (RMSE) values suggest 

high statistical significance of the above linear relationships. Therefore, if the respective actual cooling, heating 

and ventilation energy consumption of the test area is
*t

cE , 
*t

cE  and
*t

cE , the respective energy savings from 

cooling, heating and ventilation can be calculated as follows, where positive values indicate energy savings and 

negative values indicate energy waste. 
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5. TEST RESULTS 

5.1 Occupancy Modeling Results 

In order to validate the performance of the occupancy detection model, the ground truth occupancy data was 

collected in three rooms within the test area during the test period. These rooms were located on both south and 

north sides of the building, had different sizes, and were occupied by occupants who had distinct occupancy 

patterns. These rooms were purposefully selected to represent all rooms within the test area. The occupancy of 

these rooms was monitored by digital cameras. Images taken from these rooms were hand-labeled by the authors 

to obtain the ground truth occupancy data. The estimated occupancy for these three rooms, which was reported by 

the occupancy detection model also at one-minute intervals, was then compared to the ground truth to analyze the 

accuracy of occupancy detection. The results are summarized on a daily basis and shown in Table 1. 

 

Table 1: Daily accuracy of occupancy detection model 

Week Room A (%) Room B (%) Room C (%) 

max min mean max min mean max min mean 

1st 97.9 91.6 93.4 100 87.6 94.3 100 91.6 94.3 

2nd 97.3 88.9 93.0 100 90.7 98.5 100 78.4 93.8 

3rd 92.7 89.4 91.1 93.4 88.6 90.7 100 82.2 93.0 

 

The results indicate that the estimated occupancy in the three rooms well matched the actual occupancy. The 

daily accuracy varied between 78.4% and 100%, with an average of 93.4%. For each room, on average, the daily 

accuracy was over 95% for 33.3% of the time. From a weekly perspective, the mean accuracy for all rooms during 

the entire test period was always higher than 90%. Moreover, the accuracy was generally comparable between the 

three rooms. Considering the representativeness of the three rooms, it is reasonable to believe that the accuracy of 

the estimated occupancy in those non-camera-monitored rooms was consistently high during the test period. 

The mean occupancy was 50%, 41%, and 54% at the room level and 69%, 61% and 61% at the zone level for 

the three consecutive weeks. From a daily perspective, the mean zone-level occupancy varied between 47% and 

80%. From a zone perspective, the mean occupancy varied between 23% and 100%. The cooling period of a zone, 

when the 22.8 oC set point was enforced, was directly determined by the zone’s occupancy. Average cooling 

period and average occupied period were highly correlated, as can be seen in Figure 2. The difference between 
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these two values was due to the 15 minutes delay for the system to switch from the occupied mode to the vacant 

mode. A larger difference between these two values indicates more frequent changes between occupied/vacant 

modes. 

 

 
Figure 2: Average cooling and occupied periods for 21 test days 

5.2 Energy savings 

The baseline cooling, heating and ventilation energy consumption of the test area during the test period was 

calculated using equations (1-3), and compared with the actual energy consumption of the same period. The 

energy savings are calculated using equations (4-6). The results are summarized in Table 2. 

 

Table 2: Daily HVAC energy savings 

Week Cooling (%) Heating (%) Ventilation (%) Overall (%) 

max min mean max min mean max min mean max min mean 

1st 18.4 3.1 10.2 14.4 -78.9 -33.0 15.2 0.3 7.9 14.4 -5.4 4.1 

2nd 16.1 2.3 10.4 0.0 -59.1 -29.8 14.3 2.4 8.5 11.3 1.0 5.1 

3rd 19.6 4.0 11.9 6.1 -98.1 -30.7 16.4 2.0 9.7 13.7 -0.2 6.7 

 

It can be seen from the results that the occupancy driven HVAC control led to an average saving of 10.8% 

and 8.7% in cooling related energy and ventilation related energy, respectively. The amount of savings was 

generally consistent on a weekly basis, but varied significantly on a daily basis. In addition, an average increase of 

31.1% in heating energy was observed. This increase was due to the fact that when the temperature set point was 

set back in a vacant zone, the difference between the current temperatures and desired temperatures increased. 

This increased difference sometimes caused the VAV reheating valve to switch its status from closed to open, 

resulting in unintended waste of heating related energy. The analysis on heating energy related data also agrees 

with this conclusion. The 25.6 oC temperature set point was used for 31.7% of the time, when averaged over all 

zones and the entire test period. This figure, however, was almost negligible for the year of 2011 and 2012. It 

indicates that the controller has forced the system to stay at a higher temperature set point for much longer than it 

normally does, and this has caused a significant increase in heating energy consumption.  

The relationship between the daily energy savings and the daily occupancy is plotted in Figure 3. All data 

points are divided based on the occupancy, namely group 1 (occupancy < 0.55) and group 2 (occupancy>0.55). 

Using unpaired right-tailed t test, the results show that, at a confidence level of 99%, the mean energy savings in 

days with occupancy less than 0.55 are statistically larger than the mean energy savings in days with occupancy 

higher than 0.55. However, the impact of occupancy on energy savings is not statistically significant within each 

group. Given the occupancy, the daily energy savings can vary within a wide range and therefore are 

unpredictable. This suggests that there existed other factors that exerted impact on the energy savings resulting 

from the occupancy driven controller.  
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Figure 3: Relationship between occupancy and daily energy savings 

 

Among these factors, a major one is the outside temperature. The outside temperature is sampled once an hour 

at AHUs. The relationship between the mean outside temperature and the energy savings is plotted in Figure 4. 

The higher energy savings during warmer days partly resulted from the fact that when the temperature set point 

was set back to 25.6 0C in a zone, the temperature in the zone was generally higher than cooler days, leading to 

less heating energy consumption triggered by the increased set point.  This relationship, coupled with the variance 

in outside weather temperature, also explains the variance in daily energy savings, which varied between -0.2% 

and 14.4% on a daily basis. 

 

 
Figure 4: Relationship between outside temperature and daily energy savings 

6. DISCUSSION AND CONCLUSIONS 

This paper presents one of the few recent efforts to examine the energy savings of a bimodal occupancy driven 

demand response HVAC controller achievable in a real-world environment. A building-scale implementation is 

carried out, and is supported by an ambient sensor-based real-time occupancy detection model that feeds the 

controller with real-time room-level occupancy information. This paper explores how much energy savings could 

be achieved in a building, where energy savings are impacted by various uncontrolled factors, such as occupant 

schedules and outside weather conditions, in addition to the HVAC controller. A test was done for three weeks. 

Mean energy savings were 5.3%, varying between -0.2% and 14.4% on a daily basis. It is worth noting that the 

temperatures in occupied rooms were maintained within the range specified by the building codes and standards. 

There was no complaint submitted by occupants to the building managers or campus facilities management 

services about thermal discomfort caused related to the test.  

The occupancy conditions had a direct impact on the amount of daily energy savings. Higher energy savings 

were observed in days when zones in the test area were less occupied. Meanwhile, the energy savings were 
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impacted by the weather conditions as well. A higher outside temperature could cause an increase in the energy 

savings when the occupancy driven controller was implemented. These findings are complementary to related 

findings reported from building energy simulations. The energy savings achieved in the test were lower than those 

reported in the majority of the prior research (Bauman et al. 1994; Chen et al. 2008; Goyal et al. 2012), which 

reported savings between 15-50% in simulations. This difference partially resulted from one limitation of the 

evaluated bimodal occupancy driven HVAC controller, that it does not prevent the VAV boxes from reheating air 

in vacant zones. This limitation has unnecessarily resulted in a significant increase in heating energy, and lowered 

the overall energy savings. The lower energy savings also resulted from constraints that are usually not modeled 

in simulations. For example, the 15 minutes delay for the system to switch from the occupied mode to the vacant 

mode is not considered in simulations. Enforcing this delay reduces energy savings, however, it is necessary in 

the real-world test in order to reduce too frequent system startups and maintain occupant comfort. In addition, 

HVAC services in public spaces within the test area, such as lobbies, corridors and restrooms, were always under 

the occupied mode during the test. These spaces were included in energy saving calculations, and hence reduced 

the overall percentage energy savings of the test area.  

One fact that needs to be emphasized is that the test was done in the warm Southern California region, where 

cooling and ventilation are dominant energy consumers in HVAC systems. In regions where heating energy 

consumption is higher, the bimodal controller needs to be redesigned to avoid heating vacant zones, and the 

resulting energy savings are likely to vary.   

The absolute amount of daily HVAC energy savings was 12.0 kWh on average during the test. Considering 

the fact the test area accounts for about one third of the total area of the building and HVAC energy consumption 

in spring is below yearly average, the annual HVAC energy savings, if the occupancy driven controller is 

implemented in the entire test bed building, are estimated to be roughly 16,000 kWh. However, if the reheating 

valves are disabled under the vacant mode, the estimated annual savings will increase to 23,000kWh. In future 

research, the controller will be improved to address this issue by enabling it to control the positions of reheating 

valves, which will mitigate reheating energy related wastes and further reduce HVAC energy consumption. The 

controller will also be operated and evaluated during summer time, which represents the conditions that contribute 

most to HVAC-related energy consumption in the Southern California area. 
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