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ABSTRACT 
 

In this paper, we present a new method for supporting onsite construction and 
facility management tasks by allowing field personnel to automatically have access to 
the latest project information in form of Augmented Reality (AR) overlays, visually 
document onsite issues/progress, and communicate information with other personnel 
on or off site. Our near real-time and marker-less mobile augmented reality solution 
builds on top of a new image-based localization method for 3D point clouds that have 
been reconstructed using a Structure-from-Motion (SfM) pipeline and are clustered 
based on already available geo-location data. By using images captured from 
commodity smartphones/tablets, our method computes a precise 6-DOF pose for the 
camera and delivers relevant project information in form of AR overlays. Our main 
contributions lie in efficient clustering of 3D point clouds and rapid computation of 
camera pose by detecting an appropriate cluster of 3D points. Compared to our 
previous work for AEC/FM mobile augmented reality applications, the experimental 
results demonstrate that the proposed clustering approach accelerates image-based 
localization using 3D point clouds, taking 1-2 seconds for a single localization. 

 
INTRODUCTION 
 

Onsite information management is indispensable to successful operations of 
construction and facility management field activities. Inexpensive and prompt access 
to reports of inspection, management, and/or specifications facilitates the 
identification, processing, and communication of quality control issues (Golparvar-
Fard et al. 2012; Chen and Kamara 2011). It further enables engineers to proactively 
decide on corrective actions and minimize the excessive cost and schedule delays in 
managing the construction or operation of the facilities (Bae et al. 2012; Kim et al. 
2013). Until recently, the commonly accepted practice for onsite information 
management involved manual/monotonous data collections, non-systematic analysis, 
and visually complex reporting (Golparvar-Fard et al. 2011; Navon and Sacks 2007).  

Over the past decade, the advent of smart mobile devices, such as 
smartphones or tablets, has provided a great opportunity to improve existing practices. 
A recent survey conducted by McGraw Hill reveals that 93% of a representative 
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sample of general contractors and subcontractors are now using mobile devices on 
their jobsites to document workflows (ENR 2012). Kim et al. (2013) have 
summarized that to improve productivity of onsite operations, any onsite information 
management system should: 1) enable project monitoring capabilities (Golparvar-
Fard et al. 2011; Retik et al. 2002), 2) provide easy access to relevant information so 
that onsite resources could be managed more effectively (Bae et al. 2013a,b; Son et al. 
2012), and 3) function in near real-time to share information and facilitate 
interactions among project participants (Bowden et al. 2006; Aziz et al. 2005). 

To achieve these functionalities in form of Augmented Reality (AR), we have 
proposed a vision-based mobile augmented reality system which identifies location 
and orientation of mobile devices solely based on a visual features extracted from site 
photographs (Bae et al. 2013a,b; Bae et al. 2012). This marker-less and infrastructure-
independent system, called HD4AR (Hybrid 4-Dimensional Augmented Reality), 
provides high-precision information retrieval in near real-time without requiring 
external sensors (e.g., geomagnetic or inertial sensors) or environmental constraints 
(e.g., GPS satellites or wireless access points), as shown in Figure 1. In our recent 
work (Bae et al. 2013a,b), we also presented a method for 3D annotation from a 
single 2D image taken by commodity smart devices to easily and quickly associate 
project information with actual 3D physical elements in the scene, and thus enable 
real-time site monitoring and convenient association of project information with real-
world 3D building and civil infrastructure components on all commodity smartphones 
and tablets. Although the latest HD4AR system achieves millimeter-level accuracy 
and near real-time localization/augmentation using 3D point cloud reconstructed from 
site photographs, the localization performance of HD4AR still depends on the scale of 
3D point cloud, i.e. the number of 3D points in the point cloud. As a consequence, the 
larger scale of 3D point clouds can cause longer localization time. 

 

(a) (b-1) (b-2)

(c-1) (c-2) (c-3)
 

Figure 1. An example of HD4AR application; (a) initial base images, (b) 3D point 
cloud, and (c) localization/augmentation results – the system precisely renders 
overlays with significant changes in viewpoint (adopted from Bae et al. 2013b). 

 
This paper builds on our previous work on the HD4AR and proposes a new 3D 

point cloud clustering scheme to further accelerate localization speed of HD4AR. The 
approach segments the large-scale 3D point cloud into several smaller point clouds 
using geo-location data, i.e. 3D site coordinates values from GPS, which can be easily 
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obtained with modern commodity mobile devices. Then, the image-based and model-
based localization of HD4AR utilizes these smaller point clouds to reduce the overall 
localization time by performing direct 2D-to-3D matching against small size of 3D 
point cloud. After reviewing the overall structure and workflow of the HD4AR system 
for image-based 3D reconstruction and localization, the paper presents the 3D point 
cloud clustering approach in detail. The robustness of the proposed system has been 
validated with real static building on the campus under varying degrees of viewpoint. 
The potential of the HD4AR, as the basis of smart device based field reporting and 
operation and maintenance solution for improving the productivity of onsite 
construction and facility management activities, is also discussed. 

 
HD4AR: HYBRID 4-DIMENSIONAL AUGMENTED REALITY 
 

HD4AR is a mobile augmented reality system that allows site personnel to use 
existing and already available camera-equipped mobile devices, such as smartphones 
or tablets, to take pictures and accurately retrieve project information related to users’ 
surrounding context. In order to augment photographs, the HD4AR first requires an 
initial 3D point cloud of target scene that roles as a reference model for entire 
localization/augmentation process. Preparing the 3D point cloud, i.e. bootstrapping 
process, requires initial overlapping photographs and the Structure-from-Motion 
(SfM) algorithms that estimates 3D position of 2D image feature points. By 
introducing a new parallelized SfM framework, which accelerates the computational 
time of an existing 3D reconstruction pipeline by a factor of 30 times, Bae et al. 
(2013ab;2012) make model-based localization feasible in mobile augmented reality 
and provide much shorter point cloud preparation time compared to existing work. To 
speed up the 3D reconstruction, the HD4AR has used four approaches: 1) the 
combination of several state-of-the-art feature detectors and feature descriptors 
including binary descriptors, 2) new filtering procedure on the track creation and SfM 
stages to reduce the noise of a final 3D point cloud, 3) extracting representative 3D 
descriptors to optimize the memory consumption and enable direct 2D-to-3D feature 
matching for localization of new images with respect to the point cloud model, and 4) 
a scheme for use of multi-core CPU and GPU. 

Along with the proposed 3D reconstruction framework, the HD4AR also 
provides a new plane transformation (Homography) based 3D cyber-physical content 
authoring approach, which purely creates 3D cyber-information using user inputs 
from a single 2D image and automatically associates user-driven cyber-information 
with corresponding physical objects in 3D geometry. As described by Bae et al. 
(2013a,b), user-driven elements on 2D images (e.g., onsite daily construction, QA/QC, 
punch lists, and facility inspection reports) can be accurately triangulated and 
associated with components of the building or civil infrastructure in target 3D point 
cloud. In addition, the generated 3D cyber-information by users can be precisely 
overlaid on other photographs taken at completely different locations. 

Once the point cloud is generated and the cyber-information is aligned, the 
HD4AR server can augment photos sent from the client running on user’s mobile 
devices. From a high-level perspective, this process operates as shown in Figure 2. 
Step 1, the field personnel, upon finding a section of the worksite he/she wishes to 
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query, takes a picture of the area using a mobile device. Step 2, the device uploads the 
captured image to the HD4AR server. Step 3, the server runs feature detection, feature 
matching, and camera calibration algorithms to identify the relative location and 
orientation of the camera against the 3D point cloud. Step 4, using the relative 
rotation and translation information of the image as input, the server determines what 
cyber-information are within the image’s field of view, and where they appear. Step 5, 
the cyber-objects are sent back to the user’s device with positional information and 
semantic information. Step 6, the user’s device renders the captured image overlaid 
with the returned cyber-objects in the correct position. After a field engineer has an 
augmented photograph, he or she is able to use a multi-touch interface to select 
physical components in camera’s field of view to retrieve more information. 

 

 
Figure 2. The localization/augmentation process of the HD4AR method. 

 
3D POINT CLOUD CLUSTERING 
 

The localization speed of the HD4AR depends on the number of 3D points in 
the point cloud. If users build a dense and large-scale 3D point cloud, such as entire 
construction site or buildings, the localization and augmentation time is getting longer 
since the system tries to perform direct 2D-to-3D matching with a huge 3D point 
cloud. For staging the solution on construction sites, in our previous approach, we 
proposed onsite personnel to create multiple point clouds associated with different 
locations/areas on the jobsite. For example, separate point cloud models were created 
for different spaces within the same building floor such as corridor and rooms. This 
strategy requires the user to choose the location/area from a list on the client’s device 
and enable image-based localization with respect to the corresponding point cloud. To 
alleviate the requirement for generating separate point cloud models and selecting an 
appropriate model during onsite information retrieval, in this paper, we propose to 
segment a large-scale 3D point cloud into several clusters automatically and use each 
cluster to localize and augment new photograph sent from the client device. To 
cluster the 3D point cloud, we use GPS latitude and longitude values measured by 
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mobile device and recorded in the image in form of EXIF (Exchangeable Image File 
Format) tag. There is no need for accurate GPS values as we only use this information 
for clustering purposes. The overall steps for 3D point cloud clustering are: 

 

1) Partitioning the base images: All base images participated in 3D reconstruction 
are divided into several clusters using latitude and longitude values of each base 
image. In order to find the proper number of clusters, hierarchical clustering 
analysis is first used to estimate starting values for the K-means algorithm 
(Norušis 2011). Based on the resulting number of clusters, K-means is performed 
to partition base images to each cluster with the nearest mean of GPS values. 

2) Clustering the point cloud: Once the base images are successfully partitioned, we 
segment the target 3D point cloud by selecting 3D points that are observed by 
base images in each cluster. As a consequence, each clustered point cloud 
contains less 3D points compared to initial 3D point cloud, resulting smaller scale. 
 

The localization process is slightly modified to handle clustered 3D point 
clouds. In our new method, upon receiving the new photograph from the client device, 
the HD4AR server first finds the nearest cluster by comparing GPS values recorded in 
the new photograph to mean value of each cluster. After finding the nearest cluster, 
the server performs existing localization method, i.e. camera calibration with direct 
2D-to-3D matching, to compute a complete pose of the camera. If the new 
photograph does not include GPS tag, the server attempts to localize the image with 
all clustered point clouds in parallel. As we will discuss in next section, the proposed 
clustering approach results faster localization compared to our previous work 
although it requires mobile devices to enable GPS sensors during the AR cycle. 

 
EXPERIMENTAL RESULTS 
 
 This section describes experiments we conducted to assess the performance of 
localization with the proposed clustering approach. The server side of the HD4AR 
was running on a desktop computer with 8 gigabytes of 667 MHz DDR3 RAM, and a 
4-core Intel i7 CPU 870 (@2.93 GHz) processor running Windows 7. The NVIDIA 
Geforce GTX 560 Ti graphic card was used for GPU computations. The base image 
set used to create a 3D point cloud came from an existing building on campus of 
Virginia Tech. The localization test images were taken at random locations and tested 
on-site for localization robustness. All the photographs were taken using Samsung 
Galaxy Nexus smartphone with Android version 4.2. 
 
3D Reconstruction and Point Cloud Clustering. First, a 3D reconstruction 
procedure with the HD4AR was performed on base images. To validate our approach, 
we enabled the GPS sensor installed in smartphones and recorded its values in form 
of EXIF tag during the photo collection. In addition, Fast REtinA Keypoint (FREAK) 
(Alahi et al. 2012) descriptor is used to minimize feature extraction time and memory 
consumption during the 3D reconstruction. The resulting point cloud is then 
partitioned into three clusters using GPS values of each base image. The final results 
of 3D reconstruction and clustering are summarized in Table 1 and the results show 
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that the initial 3D point cloud is successfully reconstructed and well partitioned into 
three clusters. Figure 3 shows the final 3D point cloud and its corresponding clusters. 

 
Table 1. 3D reconstruction and clustering results 

 
Initial 

Point Cloud 
Cluster #1 Cluster #2 Cluster #3 

Number of base images 66 15 21 30 

Number of 3D points 70,906 24,178 23,098 27,528 

Mean re-projection error 0.523   pixels 0.511 pixels 0.553 pixels 0.608 pixels 

Centroid  
(latitude, longitude) 

(37.2290,  
-80.4225) 

(37.2293, 
-80.4227) 

(37.2289, 
-80.4227) 

(37.2290, 
-80.4222) 

 
 

 
Figure 3. Resulting 3D point clouds with the HD4AR and the proposed clustering 
method; (a) Initial 3D point cloud, (b) cluster #1, (c) cluster #2, and (d) cluster #3. 
 
Localization with Clustered 3D Point Clouds. The localization success-ratio, mean 
re-projection error, and the elapsed time using clustered 3D point clouds were 
measured and compared to results using non-clustered single point cloud. In this 
experiment, we only measured the localization performance with the sequential 
requests from a single device although the HD4AR can handle multiple requests of 
localization from several client devices simultaneously, which leads to increased 
system capacity. As observed in Table 2, the experimental results show that the 
clustering approach indeed accelerates the overall localization speed up to 1.535 
times with the tested data set, without significantly reducing success-ratio and mean 
re-projection error. By using geo-location data, all tested images were matched 
against correct clusters, and thus resulted in 100% success-ratio of localization. In 
addition, the mean re-projection error of localized photographs with each cluster 
presents 1-pixel error in all cases. 
 To further demonstrate the acceleration factor of the proposed approach, we 
also measured elapsed times for each step in localization, i.e. the file i/o time (loading 
corresponding 3D point cloud onto memory), cluster selection time, feature extraction 
time, and the matching/calibration time. As shown in Table 3, the matching and 
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calibration takes the longer time when the scale of 3D point cloud (i.e. number of 3D 
points) is larger, while the feature extraction time remains constant. Therefore, we 
can conclude that the proposed clustering approach, which segments large-scale point 
cloud into smaller point clouds, reduces overall localization speed by reducing the 
scale of 3D point cloud and direct 2D-to-3D matching time. If we only consider the 
direct 2D-to-3D matching procedure, the matching/calibration time is up to 1.924 
times faster than our previous work.  
 
Table 2. Localization success-ratio and average localization time 

 
Initial 

Point Cloud 
Cluster #1 Cluster #2 Cluster #3 

Localization success-ratio 100% (75/75) 100% (25/25) 100% (25/25) 100% (25/25) 

Mean re-projection error 0.958 pixels 0.937 pixels 0.960 pixels 1.037 pixels 

Avg. localization time 2.735 sec 1.897 sec 1.782 sec 1.934 sec 
Performance gain in 

localization time  
1× 1.442× 1.535× 1.414× 

 
Table 3. Details of localization time 

 
Initial 

Point Cloud 
Cluster #1 Cluster #2 Cluster #3 

Number of 3D points 70,906 24,178 23,098 27,528 

File i/o time(a) 1.124 sec 0.327 sec 0.316 sec 0.391 sec 

Cluster selection time 0 sec 3.5 × 10-7 sec 3.5 × 10-7 sec 3.5 × 10-7 sec 

Feature extraction time 0.759 sec 0.775 sec 0.755 sec 0.760 sec 

Matching/calibration time 1.976 sec 1.122 sec 1.027 sec 1.174 sec 
Performance gain in 

matching/calibration time 
1× 1.761× 1.924× 1.683× 

(a) Due to the server-client architecture, loading 3D point cloud onto memory takes place only 
once during the AR cycles. Thus, it is excluded from calculating the overall localization time. 
 
CONCLUSION 
 
 The HD4AR was designed with the intent of bringing high-precision mobile 
augmented reality to field personnel without requiring external sensors or 
infrastructures. The HD4AR allows using existing mobile devices to take pictures for 
accurate localization and visualize project information, punch list, and/or inspection 
reports on top of the associated building elements in the photographs. The 
performance of the HD4AR, with a localization success-ratio of 100% and mean re-
projection error less than 1 image pixel, implies that the system can be applied to 
construction progress monitoring, QA/QC reporting, and/or facility management 
operations. Despite the accuracy and near real-time performance of the HD4AR, 
however, the localization speed needed to be further accelerated to provide better user 
experience. To address this issue, in this paper, we proposed a clustering method that 
partitioned 3D point cloud into smaller scale of point clouds using geo-location data. 
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The clustered approach reduces the scale of 3D point cloud to be searched and 
accelerates overall localization time compared to our previous work. With the smaller, 
clustered point clouds, the HD4AR now takes less than 2 seconds for single 
localization. In future work, we plan to develop a cache based kd-tree approach, 
which caches 3D points by analyzing users’ localization request pattern and uses a 
small cached point cloud to further accelerate localization speed. 
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