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ABSTRACT  

In this paper, an integrated framework and a smart algorithm for vehicle 
positioning are proposed. The standalone Global Positioning System (GPS) cannot 
provide accurate location information in dense and indoor environments. Therefore, 
an integrated framework is proposed which exploits additional positioning 
technologies including vehicle-to-infrastructure and vehicle-to-vehicle 
communications, radio-frequency identification, map matching, and dead reckoning 
for vehicle localization.  Since different applications require different location 
accuracy, a smart algorithm is also provided which shows how different localization 
technologies under various situations are selected and used to obtain the desired 
accuracy with the least amount of complexity. A series of comprehensive MATLAB 
simulations are conducted to evaluate the performance of the algorithms.  Simulation 
results show that standalone GPS is not a reliable positioning technique in all 
situations; second, an integrated technique using several positioning technologies is 
required to achieve the minimum application requirements in all situations; third, 
using the smart algorithm, the required accuracy and latency can be achieved by 
selectively adding or removing localization resources. 

 
INTRODUCTION AND RELATED WORK  

The significant growth of population and vehicles demands more reliable and 
efficient transportation networks everywhere, from large and small cities to suburb 
and rural areas. Intelligent Transportation Systems (ITS) have emerged to improve 
safety, efficiency, and navigation quality of the transportation networks by taking 
advantage of different technologies (Boukerche et al. 2008).  

Current vehicle positioning techniques highly rely on GPS. However, GPS 
cannot provide reliable location information for all applications in all situations. GPS 
does not work at all in indoor environments such as parking garages and tunnels due 
to severe attenuation of satellite signals and its performance suffers severely from 
multipath in dense environments such as forests and commercial areas (Hofmann-
Wellenhof et al. 1997; Vaghefi and Buehrer 2013). Therefore, there is a need for an 
alternative positioning technique which is able to provide the localization accuracy 
requirements of all ITS applications under different geographical areas. 
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Another major challenge in this field is that each application of ITS requires a 
specific localization accuracy at a specific latency. For example, collision warning is 
a safety application which requires highly accurate location information at the least 
amount of latency (Shladover and Tan 2006). In this paper, an integrated framework 
and a smart algorithm are proposed to address these two challenges. The reader is 
referred to (Amini 2013) for more details about different ITS application accuracy 
and latency requirements.  

 
INTEGRATED FRAMEWORK  

An integrated positioning framework to enhance the performance of GPS 
technology is introduced. In this framework, the vehicle is able to exploit all 
positioning technologies available and does not exclusively rely on GPS connections. 
In the proposed framework, besides GPS, other techniques including vehicle-to-
infrastructure (V2I) and vehicle-to-vehicle (V2V) communications, radio-frequency 
identification (RFID), map matching (MM), and dead reckoning (DR) are used. 
Although several similar approaches have been suggested previously in the literature 
(Bevly and Farrell 2013; Boukerche et al. 2008; Parker and Valaee 2006), no 
computer simulations or real-world experiences are performed to validate their 
approaches. In this paper, a closed-to-real scenario is developed in MATLAB and the 
performance of the proposed integrated framework is evaluated. The advantages and 
disadvantages of each localization technology are also discussed in detail.  

GPS is a satellite-based navigation system which is widely used for vehicle 
localization. A GPS receiver collects a series of time-of-arrival (TOA) measurements 
from several satellites with known locations and uses them to determine its location. 
In order to find the vehicle location, the GPS receiver needs to connect to at least four 
satellites (Hofmann-Wellenhof et al. 1997). However, in some situations, the receiver 
is not able to communicate with enough satellites.  Sensor and cellular localization 
can alternatively be used in these situations (Patwari et al. 2005; Vaghefi and Buehrer 
2014). In this case, a base station (BS) or an anchor node (AN) plays the role of a 
satellite. TOA measurements between the vehicle and BS (or AN) can be used to find 
the vehicle location. BSs and ANs are fixed and their locations are known. Therefore, 
in this context, the connection between the vehicle and BS (or AN) is referred to as 
V2I communications.  Besides communication with infrastructure (BS or AN), the 
vehicle is also able to communicate with neighboring vehicles and collects TOA 
measurements from them. This type of connection is referred to as V2V 
communications (Yao et al. 2011).  RFID is a wireless technology which uses radio-
frequency electromagnetic fields to transfer data from a RFID tag to a RFID reader. 
RFID can be used for both localization and data transfer simultaneously (Ali and 
Hassanein 2009). However, unlike GPS, V2V, and V2I, RFID readers are not able to 
measure ranges from RFID tags. In fact, a reader is only able to tell whether or not a 
specific tag is inside its communication range.  In a MM technique, data and 
information from roads and maps are incorporated to enhance the accuracy of 
localization (Jagadeesh et al. 2004).  Last but not least, in DR technique, the previous 
vehicle locations are used to increase the accuracy of future estimates. An underlying 
dynamic model is used to predict the next location of the vehicle which is then 
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combined with the measurements obtained from other resources such as GPS to 
estimate the vehicle location and to provide a more accurate estimate (Aono et al. 
1998).  

Many studies have considered different localization techniques in which an 
auxiliary resource is used to assist GPS to provide better accuracy such as GPS+V2V 
(Yao et al. 2011), GPS+RFID (Lee et al. 2012), GPS+MM (Kim 1996) and GPS+DR 
(Aono et al. 1998; Farrell 2008). However, these techniques fail to operate properly 
when GPS does not work at all, since the assisted techniques are not able to localize 
the vehicle in the absence of GPS reception. In the proposed framework, the system is 
not limited to GPS connections and uses them only if there are available.  

In order to exploit the proposed integrated framework, a localization 
algorithm is required which is able to utilize all resources mentioned above. Since 
each of these resources has their own specific characteristics, such as 
synchronization, measurement type, communication range, etc., the algorithm should 
be able to take all the aspects and requirements into account. The derivation of such 
algorithm is outside scope of this paper. However, the reader is referred to (Amini 
2013) for the details of such algorithm. 

 
SMART ALGORITHM  

Different ITS applications need different localization accuracy and latency 
requirements.  Therefore, a smart algorithm is proposed which regulates the number 
of resources used for localization in order to achieve the desired accuracy at the least 
latency. In the previous section, we proposed an integrated technique in which several 
resources are used to localize the vehicle. However, sometimes the vehicle is 
connected to several units and not all of them are necessarily useful. These 
connections slow down the estimation process and do not provide significant 
improvement. The smart algorithm proposed here filters out the redundant 
connections and keeps those connections that provide the desired accuracy. 
Therefore, the proposed smart algorithm processes all available connections and 
reports only the useful ones to the integrated algorithm.  

 

 
 

Figure 1. Flowchart of the smart algorithm. 
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Figure 1 shows the flowchart of the proposed smart algorithm. In each time 
step, the set of links from the previous step is provided to the algorithm. Then the 
algorithm checks how many of those links are still connected (this set is called 
predicted set). It also collects all other links available to the estimator. Then, the 
algorithm calculates the Cramér–Rao lower bound (CRLB) of the predicted set. The 
CRLB expresses a lower bound on the performance of any unbiased estimator (Kay 
1998). Therefore, CRLB is used here to predict the performance of the predicted set 
(called predicted accuracy). Then the algorithm compares the predicted accuracy with 
the desired accuracy (which is determined by the application). If the desired accuracy 
is achieved the algorithm continues without changing the predicted set. If the desired 
accuracy is larger than the predicted accuracy, the algorithm has more than enough 
connections. In this case, the least effective connection (only one connection) is 
removed from the set. On the other hand, if the desired accuracy is smaller than the 
predicted one, the algorithm does not have enough connections; therefore, the most 
effective connection is added to set. In this case, the process is repeated until the 
desired accuracy is achieved. The selection of links to be removed or added is 
processed based on the CRLB. The detail for the selection process is provided in 
(Amini 2013). 

 
SIMULATION RESULTS  

In this section, the performance of the proposed algorithms is evaluated 
through computer simulations. The steps taken to simulate the algorithm performance 
are depicted in Figure 2. Frist, the network is designed and the locations of elements 
are defined. Then, the true ranges between the elements are calculated. The links 
between the elements are determined based on different types of environments (e.g., 
clear view, dense, and indoor environments) and other related parameters. The 
measurements are simulated by adding noise (typically Gaussian random variables) to 
the true values. Then, the algorithm uses the simulated measurements to estimate the 
locations of the vehicles. Finally, the estimation error is obtained by comparing the 
estimated locations with the true ones. Simulation parameters are selected based on 
previous real world studies and experiments. The reader is referred to (Amini 2013) 
for more details about simulation parameters. 

 

 
 

Figure 2. Simulation steps.  
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Localization Techniques Comparisons.  In this simulation, different vehicle 
localization techniques are compared under four geographical environments: clear 
view, semi-dense, dense, and indoor.  In clear view environments such as highways 
and rural roads, the vehicle has access to sufficient satellites and the effects of 
multipath and shadowing are not significant. In dense environments such as 
downtown of large cities and forest areas, the vehicle typically has limited access to 
GPS satellites and the signals from satellites are highly affected by severe multipath 
and attenuation. In indoor environments such as tunnels and parking garages, the 
vehicle does not have any connection to GPS satellites, as the signals attenuate 
sharply and are not received by the GPS receiver.    

 

 

(a) Clear View (b) Dense 

(c) Indoor (d) Simulated road 

 
Figure 3. Simulation of different localization techniques.  

 
Figure 3 shows the performance of different vehicle localization techniques 

along with the integrated algorithm in different environments. In  
Figure 3d, the road used for the simulation is depicted. In each scenario, the 

vehicle travels the same path but the environment is changed. Note that DR is 
incorporated in all algorithms. In the clear view environment ( 

Figure 3a), all algorithms perform similarly. There are several GPS 
connections with high resolution, and adding more resources does not improve the 
accuracy significantly. The integrated algorithm outperforms other algorithms, as it 
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has access to more resources. V2I provides more improvement to the stand-alone 
GPS than any other techniques. In the dense environment ( 

Figure 3b), the stand-alone GPS has the worst performance, since GPS 
connections are limited and have low resolution due to multipath and shadowing. 
V2V, map matching, and RFID assist GPS to have better accuracy. GPS+V2V 
perform better than the other two assisted techniques. V2V provides more ranging 
measurements, while RFID only detects the presence of the vehicle and map 
matching can only keep the estimate of the vehicle location inside the roads. 
Therefore, V2V actually provides more valuable information than the other two 
techniques. Similar to the previous cases, V2I adds more improvement to GPS, since 
first it provides more ranging measurements and second it is originated from fixed 
infrastructures (BS or AN) with exact known locations. In the indoor environment ( 

Figure 3c), the stand-alone GPS completely fails to provide reasonable 
accuracy. Moreover, map matching and V2V cannot improve the accuracy of GPS in 
this case because their performances highly rely on GPS. The ranging measurements 
obtained from V2V connections are not useful, as other vehicles do not have their 
own accurate locations. Therefore, they cannot operate efficiently when GPS does not 
work at all.  RFID is more useful than the other two techniques, since its performance 
does not completely rely on GPS. The good performance of the integrated algorithm 
is achieved mainly from V2I connections.  

 

 
 

Figure 4. The simulated road for the smart algorithm.  
Performance Evaluation of the Smart Algorithm.  To evaluate the performance of 
the proposed smart algorithm, a close-to-real scenario is created in MATLAB. The 
scenario includes several geographical environments, a desired vehicle traveling a 
path of 314 time steps, 11 other vehicles, and a series of RFID and infrastructure 
distributed in network.  During the travel time of the vehicle, the required accuracy is 
changed over time: 1-100, 101-200, and 201-314 time steps are set to low (12m), 
medium (7m), and high (3m) localization accuracy, respectively. Therefore, the 
desired vehicle experiences different environments and different localization 
accuracies during its travel.  Figure 4 shows the road used to simulate the smart 
algorithm. 

Figure 5 shows the comparison between the localization error of the fully 
integrated algorithm, stand-alone GPS, and smart algorithm. Different environments 
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are indicated on the figure. At the beginning, the accuracy is set to low for the smart 
algorithm; hence, it is decreasing the number of connections one at a time until the 
desired accuracy is achieved. Note than at the time step 74, the vehicle enters an 
indoor environment where there is no GPS connection. In this case, the smart 
algorithm has few connections to select and needs to use all of them. Then the vehicle 
goes to a clear view environment and has access to many connections. Now, the 
smart algorithm can regulate the connection based on the desired accuracy which in 
this case is set to medium. After time step 201, the desired accuracy is set to high and 
the smart algorithm needs to use most of the connections. In this case, the algorithm 
rapidly adds all the required connections in one time step to achieve the desired 
accuracy. As can be seen, the smart algorithm delivers the desired accuracy by using 
the fewest possible connections. The running times of the smart algorithm for the 
three accuracy regions of low, medium, and high are 58%, 66%, and 99% of those of 
the fully integrated algorithm, respectively. As depicted in Figure 5, GPS generates 
large errors in indoor and dense environments. 

 

 
 

Figure 5. Simulation of the smart algorithm.  
CONCLUSION  
In this paper, two open challenges in the field of vehicle localization were addressed. 
First, the locations of vehicles are required everywhere in a transportation network. 
Since GPS is not able to achieve this goal, an integrated framework which takes 
advantage of several positioning techniques was introduced. Computer simulations 
were performed to show the advantages and disadvantages of each technique in 
different geographical environments. More specifically, it was shown that V2I 

0

5

10

15

20

25

Time Step

 Lo
ca

liz
at

io
n 

E
rr

or
 [

m
]  

50 100 150 200 250 300
0

5

10

15

20

25

Time Step

 N
um

be
r 

of
 c

on
ne

ct
io

ns
 

 

 

Integrated

GPS
Smart

High MediumLow 

Clear Dense Dense Indoor ClearDense Clear 

1124COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014 



communications can improve the localization accuracy more than other techniques. 
V2V communications and map matching are more useful in clear and dense 
environments than in indoor environments. The integrated algorithm outperforms 
other algorithms in all situations. Second, different localization accuracies are 
required based on application. A smart algorithm was introduced to regulate the 
number of connections based on the desired accuracy and provide the location of the 
vehicle at the least amount of latency. Computer simulations showed the 
effectiveness of the proposed smart algorithm.  
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