

Cloud-Computing Based Parameter Identification System
– with Applications in Geotechnical Engineering

Y.M. Hsieh1

1Department of Construction Engineering, National Taiwan University of Science
and Technology, No. 43, Sec. 4, Keelung Rd., Da-an District, Taipei, Taiwan;
PH: 886-2-27301056; FAX 886-2-27376606; email: ymhsieh@mail.ntust.edu.tw

ABSTRACT

Parameter or system identification is a useful tool in civil engineering. They
have wide applications across many disciplines. However, due to the lack of general-
purpose tools for such analyses, researchers need to develop their own codes with
duplicated efforts. Yet, it is sometime difficult to adopt other people’s code due to
different modeling methods used. Thus, there is a need for general-purpose tools to
resolve problems of this kind.

This paper describes a general-purpose system for such purpose. The system
has three features. First, it uses cloud-computing technology to provide large-scale
capabilities. Second, the system uses a JavaScript engine for developing extensions.
Third, it employs multi-objective particle swarm optimization for its applicability on
wide range of problems. These features allow the system provide general capabilities
to solve problems with similar needs. The design is validated and demonstrated by
identifying constitutive model parameters in geotechnical engineering.

INTRODUCTION

System identification (SI) is the process of modeling an unknown system based
on a set of input-outputs (Sirca and Adeli 2012). Hundreds of papers conducting SI
since 1995 were reviewed by Sirca and Adeli (2012) in the field of structural
engineering. SI also has several uses in geotechnical engineering. For example,
finding constitutive model parameters by using observations in laboratory tests
(Mulia 2012), supported excavation (Finno and Calvello 2005; Rechea et al. 2008),
tunneling (Pichler et al. 2003), and in-situ testing (Zentar et al. 2001). SI for
identifying model parameters is called parameter identification (PI). Many
applications of SI or PI in open literatures have built their own programs to conduct
the SI or PI process. No general-purpose parameter or system identification system
seems to exist. Thus, many researchers have duplicate efforts on developing their
own research codes. Significant efforts may still be needed when researchers are
willing to share their codes. This is because different researches may want to use
different modeling methods (e.g. finite element modeling vs. empirical simplified
modeling). Therefore, there exists a need for general-purpose SI systems to avoid
duplicated efforts among different researchers.

1384COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

A general-purpose SI system is developed to answer the aforementioned
demand. The system employs IT technologies developed for cloud computing to
provide large-scale capabilities that can serve multiple users at the same time. This
capability can also be used for trying out and comparing different modeling
techniques when conducting SI. The system further incorporates V8 JavaScript
engine developed by Google, Inc. This incorporation enables the system have easy
extensibility and great flexibility, and will be explained in discussing the system
design. Finally, the system implements one of the most general optimization
technique known as multi-objective particle swarm optimization (Coello Coello and
Lechuga 2002), or MO-PSO for short. The extensibility through V8 engine and
general optimization capability given by MO-PSO makes the system developed
general-purpose.

This paper is organized as the following. First, the general procedure for SI is
described. Then, adapting PI in geotechnical engineering to the procedure described
will be explained. This section also gives reasons to some design choices of the
system developed. Next, the design and implementation of the system are revealed.
The developed user interface to the system is then demonstrated. Finally, some
concluding remarks are drawn basing on the experience for developing and using the
system.

SYSTEM IDENTIFICATION

Figure 1 shows the general process for system identification. At beginning,
unknown model parameters are generated using past experience or by random. Then,
models such as finite element models with given parameters are computed to produce
outputs. The outputs are then compared to observed behaviors, e.g. field measured
displacements. The differences are then quantified by objective functions, which
give rise to objective function values. If these values are small enough, then the
system is identified, and unknown parameters are obtained. Otherwise, the optimizer
will then try to minimize these values and guides updates to model parameters. Once
parameters are updated by the optimizer, the process loops back until satisfactory.

Figure 1. General procedure for system identification.

1385COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

Parameter identification in geotechnical engineering. The SI process illustrated in
Figure 1 can be applied for PI in geotechnical engineering. In particular, soil model
parameters are focused in this paper. Because they are essential for accurate
numerical models, and they can sometimes be difficult to obtain. For example, MCC
(Roscoe and Burland 1968), S-Clay1 (Wheeler et al. 2003), Hardening-Soil (T.
Schanz 1999), and MIT-S1 (Pestana and Whittle 1999) have respectively 5, 8, 9, and
16 parameters. These parameters often require more than one kind of laboratory tests
to determine. For instance, parameters for MCC are often derived from oedometer
tests for its main deformability parameters (,λ κ) and triaxial compression tests for

the remaining parameters (0, ,p M ν). In other words, more than one observed

behaviors are needed for successfully PI for such soil models. Therefore, the
optimizer in Figure 1 needs to handle multiple objectives.

Many past studies used an averaged sum approach to convert multiple-
objective problems into single-objective ones. However, such approach needs special
attention on how to choose weights. For example, one observed behavior might be
deformations of few millimeters while the other may be yield stress of several MPa.
It is difficult to choose the right weight to combine them into one objective.
Therefore, in author’s opinion, if the PI process needs to be general, then the Pareto-
optimal approach (Padhye 2009) is preferred for multi-objective optimization.
Furthermore, if the SI or PI has only one objective, they can still be handled by the
Pareto-optimal approach.

The model in Figure 1 can often be constructed by using finite element
method (FEM). FEM is a general tool in structural and geotechnical engineering. It
can account for complex constitutive models, geometries, loadings, boundary
conditions, and even multi-physics phenomenon. It is therefore the ideal model
choice for a general-purpose PI system. The drawback for using FEM, however, is it
takes times for computation. Therefore, it is necessary for the developed PI system to
use multiple processors and even multiple computers to help speed up the PI process.

SYSTEM DESIGN AND IMPLEMENTATION

In the following sections, the design and implementation of a general-purpose
and cloud-computing based parametric identification system are described. The
system is designed to serve multiple users, and cloud computing is used to serve their
demands. The following sections describe 1) user input, 2) system design, and 3)
user output of the system.

User input. For each parameter identification problem, users need to prepare a
parameter identification task. This preparation includes a task setting and a task
archive. The task setting is a file describing a parameter identification task. This file
is written in JavaScript and will be processed by the task executor (described later in
the system design). The file must define a JavaScript function config() and return a
configuration object, explained in Table 1. From which, two efforts can be seen to
make this system general purpose. The first effort is that each trial set of parameters
can execute several analyses using different programs. These analyses are flexibly

1386COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

defined by cmdline (defining how to execute an analysis) and files (defining files
needed for analysis) in analyses objects. The second effort is one analysis can give
rise to many objective function values. The objectives property is an array containing
several objective objects. Each objective object has three main properties: source,
target, and objective. The source property defines an associated analysis (in from
property) and a method to extract analysis results (in remaining properties of source).
The target property defines how the analysis result should look like by extracting
data from a data file. Finally, the objective property defines the name of a JavaScript
function (errorTXC in the example) written in the same file. This function computes
an objective value basing on the extracted data from both the source and the target.

Once the task setting is prepared. Users need to create a task archive. A task
archive is a zip-compressed archive. The archive contains files needed for
conducting analysis, and a task-setting file previously introduced. An example
content of the archive is given in Table 2. Once the task archive is prepared. User
need to upload the file the system to conduct the defined analysis.

Table 1. Parameter Identification Configuration Object (in JSON format).
Property Purpose & Example
input Purpose: Defile the file that contains variables to be identified. The developed

system helps substitute parameters in the file with trial parameters suggested by the
optimizer.
Example:
 input: material.inc

parameters Purpose: Define parameters and in the input file to be changed by optimizer.
Example:
 parameters: [“$lambda”, “$kappa”, “$M”, “$nuy”]

$lambda,
$kappa,
$M, $nuy

Purpose: Define ranges & initial value for each parameters to be identified.
Example:
 $lambda: { range: [0.1, 0.2], initial: 0.15 }

analyses Purpose: Define analyses to run for each trial set of parameters. It should be noted
two analyses are defined in the following example, suggesting more than one
analysis is allowed.
Example:
 analyses: [
 {name: “txc-analysis”, cmdline: “abaqus interactive job=txc”,files: [“txc.inp”]},
 {name:”txe-analysis”, cmdline: “abaqus interactive job=txe”, files: [“txe.inp”]}
]

objectives Purpose: Defines how to compute objective function values. It can contain several
objects; each has a source property defining how to extract values from analyses and
a target property defining the targets that should be matched. The following
example shows only one of such object.
Example:
 objectives: [{name: “txc-1”,source: {from:“txc-analysis”,output:“txc.dat”,set:“set-
1”,fields: [2,3,4], rowsPerTable:1, steps:[1,2,3,4]}, target: {file:”lab-txc.txt”, skip:1,
columns: [0, 1], objective: “errorTXC” }}]

Note: In JSON, […] represents an array, and {…} represents an object. Inside objects are key-value
pairs representing object’s attribute and its value.

System architecture and implementation. The logical software architecture of the
developed SI system is illustrated in Figure 2. It has two main components: cloud

1387COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

computing, and parameter identification (PI). The cloud-computing component is
responsible for providing cloud-computing benefits or characteristics. They are on
demand self-service, network access, rapid elasticity, resource pooling, and measured
service (Mell and Grance 2011). The PI component performs its task basing on user-
defined task descriptions. These two components are discussed next.

Table 2. Sample task-archive file content.
Filename Purpose
setting.json The task-setting file describes how to conduct parameter

identification.
material.inc A file contains material definition for finite element analyses
txc.inp A triaxial compression test FE-analysis input file, which includes

material.inc for defining its material properties.
txe.inp A triaxial extension test FE-analysis input file, which includes

material.inc for defining its material properties.
lab-txc.dat A text file contains triaxial compression test results from laboratory.
lab-txe.dat A text file contains triaxial extension test results from laboratory.

Figure 2. System architecture overview.

The cloud-computing component consists of five elements: Web frontends, a

task queue, a shared file system, a result database, and node managers. They form
the cloud-computing infrastructure for the developed system. Responsibilities of
each element are summarized in Table 3. Users use PHP webpages hosted by
Apache web server to upload their task archive. After it is uploaded, it is stored in
the shared file system, and a new task is generated and stored in the task queue. The
task queue is implemented as a collection in MongoDB, and the shared file system is
implemented using the GridFS capability of MongoDB. The task queue will be
polled periodically by node managers running on all computer nodes in a computer
cluster or cloud-computing facility to see whether unexecuted tasks exist. Each
unexecuted task will be fetched by one of the node manager and marked as grabbed
in the task queue. Then, the task will be handed to the PI component for execution.
During PI process, model parameters and objective values are stored to the result

1388COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

database. The web frontend may pull results out from result database for display and
visualization.

Table 3. Responsibilities of Cloud-Computing Elements.
Element Responsibility Implementation
Web frontends User interface for inputs and outputs PHP[1], Apache[2]
Task queue Stores tasks and their status MongoDB[3]
Shared file system Store task descriptions MongoDB
Result database Store SI or PI results MongoDB
Node managers Get tasks from task queue and shared

file system, and invokes task executor
PHP

[1]:http://www.php.net/ [2]:http://httpd.apache.org/ [3]:http://www.mongodb.org/

The PI component has four elements: task executor, optimizer, A/O converter,
and analyzer. Their purposes are described in Table 4. The task executor,
programmed in C++, gets needed data from the node manager, and then it uses
JavaScript engine V8 to parse and run the task-setting file to get the configuration
object previously introduced. Accordingly, the task executor then sets up the
optimizer and A/O converter. The task executor also establishes connections between
optimizer, analyzer, and A/O converter. Then, the control is handed over to the
optimizer to conduct the PI process previously introduced in Figure 1. During the
process, optimizer invokes analyzer to run defined analyses in parallel using OpenMP.
Once an analysis is ended, the optimizer invokes A/O converter to compute objective
values. The optimizer implements MO-PSO, and data on particles’ positions,
objective function values, and Pareto front are all stored to the result database,
implemented using MongoDB.

Table 4. Responsibilities of Parameter Identification Elements.
Element Responsibility Implementation
Task
executor

Parse task-description file and configure other
components accordingly.

C++, V8[1]

Optimizer Conduct objective-function minimization with
the help of A/O convertor and Analyzer

C++, OpenMP[2]

Analyzer Conduct one analysis with parameter given by
the optimizer.

C++

A/O
converter

Convert analysis results obtained from analyzer
and converts into values of objective functions

C++, V8

[1]:https://code.google.com/p/v8/ [2]: http://openmp.org/wp/

User Output. The outputs from PI, including tried parameters, objective function
values, and Pareto front, are all stored in the result database. These data are presented
to users through the Web frontends upon request. JQueryUI and Google chart API
are used for presentation. Users can also obtain raw data in comma separated value
file format to process them further in Excel.

1389COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

SYSTEM DEMONSTRATION

Figure 3 shows the main screen for the system developed. The login box &
task submission box is shown on the right-hand side of the main screen. Users must
obtain a valid account before using the system. Once users have logged in, they can
fill in any description in the description textbox, and then click on the “Choose File”
button to choose their task archive. Once finished, they can click on the submit
button to send their task archive to the system. Left-hand side of the main screen in
Figure 3 is the task queue. Users can see how long the task has been in the queue and
its status. Each task may have [V] button to view results, as in Figure 4; [L] button to
see outputs from the task executor; and [A] button to download all data to local
computer for further processing in other software, e.g. Excel.

Figure 3. Main screen for users to submit their tasks.

 Figure 4 shows the output from the system. It shows the number of iterations
conducted for PI for chosen job. It uses a slider to choose the iteration number, from
which the data are presented in the following. The system shows the number of
particles in the Pareto front versus iteration number, allowing users to get some
insight to the PI process. For a chosen iteration, the system displays its Pareto front
solutions. Detailed parameters and objective values are presented in the tabular
format.

Figure 4. Simple outputs for showing iteration process & Pareto front.

CONCLUDING REMARKS

1390COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

 A PI or SI system is successfully implemented using the chosen software
stack. In particular, using MongoDB greatly simplifies communication needs
between different computers, making parallel and distributed computing easier than
before. Interoperating between C++ and JavaScript also makes the system easy to
extend. Further use of the system is planned, and collaboration using the system is
welcomed.
ACKNOWLEDGEMENT

The author would like to acknowledge Huu-Phuoc Dang, a Ph.D candidate in
the geotechnical engineering group in author’s department, for his hard work
preparing inputs of several cases for the system developed.

REFERENCES

Coello Coello, C. A., and Lechuga, M. S. "MOPSO: a proposal for multiple objective

particle swarm optimization." Proc., Evolutionary Computation, 2002. CEC
'02. Proceedings of the 2002 Congress on, 1051-1056.

Finno, R., and Calvello, M. (2005). "Supported Excavations: Observational Method
and Inverse Modeling." Journal of Geotechnical and Geoenvironmental
Engineering, 131(7), 826-836.

Mell, P., and Grance, T. (2011). "The NIST Definition of Cloud Computing." Special
Publication 800-145, National Institute of Standards and Technology, U.S.
Department of Commerce, 7.

Mulia, A. (2012). "Identification of Soil Constitutive Soil Model Parameters Using
Multi-Objective Particle Swarming Optimization." Master thesis, National
Taiwan University of Science and Technology, Taipei, Taiwan.

Padhye, N. (2009). "Comparison of archiving methods in multi-objectiveparticle
swarm optimization (MOPSO): empirical study." Proceedings of the 11th
Annual conference on Genetic and evolutionary computation, ACM, Montreal,
Quebec, Canada, 1755-1756.

Pestana, J. M., and Whittle, A. J. (1999). "Formulation of a unified constitutive model
for clays and sands." International Journal for Numerical and Analytical
Methods in Geomechanics, 23(12), 1215-1243.

Pichler, B., Lackner, R., and Mang, H. A. (2003). "Back analysis of model
parameters in geotechnical engineering by means of soft computing."
International Journal for Numerical Methods in Engineering, 57(14), 1943-
1978.

Rechea, C., Levasseur, S., and Finno, R. (2008). "Inverse analysis techniques for
parameter identification in simulation of excavation support systems."
Computers and Geotechnics, 35(3), 331-345.

Roscoe, K. H., and Burland, J. B. (1968). "On the generalized stress–strain behaviour
of ‘wet’ clay." Engineering Plasticity, J. Heyman, and F. A. Leckie, eds.,
Cambridge University Press, 535-609.

Sirca, G. F., and Adeli, H. (2012). "System identification in structural engineering."
Scientia Iranica, 19(6), 1355-1364.

1391COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

T. Schanz, P. A. V., P.G. Bonnier (1999). "The hardening soil model: Formulation
and verification." Beyond 2000 in Computational Geotechnics, Balkema,
Rotterdam.

Wheeler, S. J., Näätänen, A., Karstunen, M., and Lojander, M. (2003). "An
anisotropic elastoplastic model for soft clays." Canadian Geotechnical
Journal, 40(2), 403-418.

Zentar, R., Hicher, P. Y., and Moulin, G. (2001). "Identification of soil parameters by
inverse analysis." Computers and Geotechnics, 28(2), 129-144.

1392COMPUTING IN CIVIL AND BUILDING ENGINEERING ©ASCE 2014

