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Abstract 
Although Building Information Modeling (BIM) is widely adopted in the Architecture, 
Engineering, and Construction (AEC) industry, difficulties in model interoperability remain, 
hindering domain-specific applications. Semantic enrichment supplements a model's semantic 
information automatically as an alternative approach to solve the problem. In this research, a part 
of the EU funded 'Cloud-BIM' project, we applied a novel deep learning technique, graph neural 
networks (GNNs), to enrich a BIM model, with the goal of testing the applicability of graph 
representation and the use of GNNs for semantic enrichment. The application scenario concerned 
classification of room types in apartments. An apartment layout graph dataset containing seven 
room types and room relationships was compiled from 224 apartment layouts. A high-
performance GNN model, GraphSAGE, was selected to train and predict room classes. Despite the 
small dataset and the sparse relationship features used in the experiment described here, 
GraphSAGE succeeded in classifying room types with an accuracy of 73%. This was 12% higher 
accuracy than two non-graph machine learning algorithms with which it was compared, and the 
prediction ability was better balanced. The findings provide clear directions for significantly 
improving the degree of accuracy by expanding the feature set of both node and edge properties, 
and this is the subject of ongoing work to refine the use of GNNs for semantic enrichment of BIM 
models.  

Keywords: Building Information Modelling (BIM), Graph Neural Networks (GNNs), Semantic 
Enrichment (SE), Deep Learning, Machine Learning, Room Classification  

1 Introduction 
Interoperability in BIM is the ability to exchange model data across applications and domains. It 
improves the collaborative workϐlows among project participants by enabling smooth data 
exchange within the BIM environment throughout the project lifecycle ȋSacks et	 al., ʹͲͳͺȌ. 
Interoperability is an essential feature of ̶Open BIM̶ systems and of future ̶Cloud BIM̶ systems, 
where project participants collaborate concurrently using a shared, federated project model held 
in a cloud repository ȋAfsari et	al., ʹͲͳ͸Ȍ. Current challenges in interoperability lie mainly in the 
loss of information during data exchange. Different applications utilize diverse and numerous 
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information requirement speciϐications, and there is a lack of robust semi-automated or 
automated means to transfer domain knowledge. 

Semantic enrichment refers to the automatic or semi-automatic addition of meaningful 
information to a building model through the extraction and interpretation of the explicit and 
implicit information in the model ȋBelsky et	al., ʹͲͳ͸Ȍ. SeeBIM ͳ.Ͳ, an early prototype software 
for semantic enrichment, was tested through application to precast concrete modeling ȋBelsky et	
al., ʹͲͳ͸Ȍ and design detailing for cost estimation ȋAram, ʹͲͳͶȌ. SeeBIM ͳ.Ͳ demonstrated the 
feasibility of the semantic enrichment approach but faced limitations in the geometry 
approximation of complex shapes and the robustness of the IF-THEN rule sets ȋSacks et	al., ʹ Ͳͳ͹Ȍ.  
SeeBIM ʹ.Ͳ removed these limitations by utilizing a BIM query language for spacial and 
topological operators and devising a robust rule compilation procedure that combined 
topological relationships and expert knowledge to generate unique identiϐication strings for each 
object class ȋMa et al., ʹͲͳͺȌ.  

All the previously discussed semantic enrichment approaches used rule-based inferencing, 
with explicit IF-THEN format rules collected from expert knowledge and experience. However, 
some problems, such as room function classiϐication, do not lend themselves to rule inferencing 
ȋBloch and Sacks, ʹͲͳͺȌ. An alternative general approach is to enrich a model using machine 
learning ȋMLȌ algorithms, training models on labeled datasets ȋNeal, ʹ ͲͲ͹Ȍ. The selection of input 
features and the model architecture are integral to the performance of the models.  

In this work, we explored a graph-based approach to semantic enrichment. In simple terms, 
a graph consists of nodes connected by edges, where nodes indicate objects and edges describe 
the relationships between nodes. As a non-Euclidean structured data format, graphs do not have 
a solid form. However, due to their ability to capture the underlying relationships among data, 
they have proven to be an effective medium for data storage, query, and analysis in academia and 
commerce ȋScarselli et	al., ʹͲͲͻ; Vicknair et	al., ʹͲͳͲȌ. 

Graph representation of building information is not a new concept. In the BIM ϐield, 
researchers have explored the use of graph data models to perform data queries based on the 
Industrial Foundation Classes ȋIFCȌ schema ȋIsmail et al., ʹͲͳ͹; Khalili & Chua, ʹͲͳͷ; Tauscher et 
al., ʹͲͳ͹Ȍ and performed pathϐinding analysis using graph theory ȋSkandhakumar et	al., ʹͲͳ͸Ȍ. 
Graph theory has also been used to generate architectural ϐloor plans ȋWang et	al., ʹͲͳͺȌ and 
shape retrieval ȋWessel et	al., ʹͲͲͺȌ. Data mining was performed on the graph representation of 
building spaces using an unsupervised machine learning algorithm to extract spatial design 
knowledge from BIM data ȋJin et	al., ʹͲͳͺȌ. However, the full potential of graphs for BIM has yet 
to be appreciated yet, especially for the interoperability problem and semantic enrichment. 
Furthermore, progress in the development of graph neural networks ȋGNNsȌ and success in their 
application to previously challenging machine learning problems ȋe.g., natural language 
processing, chemical property prediction, online shopping recommendation tasksȌ suggest that 
there may be value in pursuing the application of GNNs to semantic enrichment of BIM model 
graphs. 

2 Aims and methods 
This paper introduces GNNs as a data processing method to the ϐield of BIM. We aim to explore 
GNNs application to the semantic enrichment process by assessing its general performance in the 
room type classiϐication problem and by comparing it against other machine learning methods.  

2.1 Experiment design 
Our experiment used a self-labeled dataset of apartment room layouts based on ϐloor plans 
obtained from Internet sources as described in Section ͵.ͳ. One GNN model and two other 
machine learning approaches were trained and compared using the same dataset. Each model 
went through a learning process of train-validate-test using the labeled dataset as input. All 
models̵ performance was measured and compared using their predictions on an evaluation 
dataset. 

Our experiment has several limitations. First, the construction of the labeled dataset is a 
manual process that is prone to human errors of inconsistency or mislabeling as it relies on the 
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judgment of the labeler. Our ongoing research aims to resolve this concern by automating the 
dataset construction process. Second, since GNNs are still regarded as a new ϐield of research in 
the deep learning ϐield, and needless to say also in the BIM ϐield, this experiment̵s contribution 
to GNNs in BIM should be regarded as exploratory. Furthermore, the lack of a recognized open 
dataset for BIM ML research means that our models̵ performance cannot be directly compared 
with other existing approaches to ML-based semantic enrichment. 

2.2 Graph neural networks 
The application of deep learning has revolutionized many tasks, such as natural language 
processing ȋNadkarni et	 al., ʹͲͳͳȌ and object detection ȋBochkovskiy et	 al., ʹͲʹͲȌ. All these 
algorithms were designed for data represented in a Euclidean space, i.e., a data table or an image. 
However, many datasets have an underlying structure that is a non-Euclidean space ȋRitter, 
ͳͻͻͻȌ. A graph is a typical non-Euclidean structured data format, consisting of nodes and edges 
without a ϐixed form ȋZhou et	al., ʹͲͳͺȌ. Recently, using deep learning approaches to process 
graphs has attracted the attention of researchers, and a new technique, graph neural networks, 
has appeared ȋScarselli et	al., ʹͲͲͻȌ. 
 GNNs contain two main categories distinguished by their embedding learning mechanics. The 
ϐirst is spatial-based GNNs, generating new embeddings by considering nodes̵ spatial 
relationships. For example, GraphSAGE ȋHamilton et	 al., ʹͲͳ͹Ȍ calculates the target node 
embedding by its previous neighborhood nodes̵ features. Another GNN category applies spectral 
graph theory from the perspective of graph signal processing ȋMa et	al., ʹͲͳͻȌ. These are called 
spectral-based GNNs, like Graph Convolutional Networks ȋGCNȌ ȋKipf and Welling, ʹͲͳ͹Ȍ.  
 The common factor of all GNN models is that they take the relationships among data into 
account during learning, while these are usually ignored or hardly represented by other data 
formats. Because of this, GNNs are better at processing relationship-related tasks. Indeed, there 
are three main tasks in the GNNs domain, including node classiϐication, edge prediction, and 
graph classiϐication. Each of them has been applied in practical scenarios with satisfying 
performance. For example, social media companies utilize GNNs to recommend potential friends 
ȋGuo and Wang, ʹͲʹͳȌ, where people are nodes and their relationships are edges. Similarly, 
researchers predicted the properties of chemical compounds ȋKipf and Welling, ʹͲͳ͹Ȍ, a graph 
classiϐication task. Due to the successful application of GNNs, we expect that GNNs can solve many 
BIM-ϐield problems because relationships between entities are a structural feature of all BIM 
models. 

2.3 Room type classifier  
The proposed framework of room type classiϐication is presented in Figure ͳ. The input is 
apartment layout graphs, whose nodes represent the rooms and whose edges indicate the 
relationships between rooms. A GraphSAGE model is constructed in this experiment, containing 
four hidden SAGEConv layers with Relu activation function. The output is node prediction of 

seven room types, including a kitchen, living room, dining room, bedroom, toilet, balcony, and 

Figure 1. The proposed framework of room type classification based on a four layer GraphSAGE model. 
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laundry. The classes of each node are hidden before inputting to the model, and all nodes 
participate in the training process; therefore, the experiment is a supervised node classiϐication 
task.  

 GraphSAGE is a general inductive algorithm that leverages node features information ȋe.g., 
text attributesȌ to efϐiciently generate node embeddings for previously unseen data ȋHamilton et	
al., ʹͲͳ͹Ȍ. Instead of training individual embeddings for each node, the basic principle in 
GraphSAGE for generating node embeddings is to sample and aggregate features from itself and 
local neighborhoods. Therefore, GraphSAGE mainly relies on relationships among neighborhood 
nodes. It is similar to the process in which a person would identify a room type from relationship 
information alone. For example, we would likely consider a room as a living room if it connects 
directly with all other rooms in an apartment. 

The GraphSAGE embedding update procedure contains three steps. In detail, the target node 
samples the neighboring nodes that have a direct connection with the target node. Then, the 
neighbors are fed into an aggregator function to generate neighbor features. There are different 
ways to design an aggregator function ȋe.g., mean, pooling, LSTM, etc.Ȍ. Where graphs are large 
ȋthousands of nodes or moreȌ, to improve the calculation efϐiciency, only a subset of neighboring 
nodes is used by the aggregator function. However, in the room type classiϐication task, the 
number of neighbors is small, and therefore the aggregator function utilizes all neighboring nodes. 
Lastly, the features obtained from the neighboring nodes and the feature of the target node from 
the previous layer are input to an update function to generate a new embedding.  

3 Experiment 

3.1 Dataset 

At the time of writing, no open repository of BIM apartment models was available. The datasets 
from earlier research applying machine learning to BIM models ȋsuch as on room type 
classiϐication ȋBloch and Sacks, ʹͲͳͺȌ and object classiϐication ȋKoo et	 al., ʹͲͳͻȌȌ were not 
published on open platforms. A convenient approach to compile BIM graph datasets is to extract 
information from IFC ϐiles and store the data in graphs directly. Ismail et al. ȋʹͲͳ͹Ȍ and Pauwels 
et al. ȋʹͲͳ͸Ȍ designed and implemented parsers to transfer data from IFC ϐiles to construct 
graphs, although the graphs were not directly amenable to machine learning. Therefore, there are 
two signiϐicant obstacles when constructing an apartment layout graph dataset: aȌ no repository 
of apartment models and bȌ no suitable parser are available. Given these limitations, we 
simpliϐied the data construction process, constructing and labeling graphs manually from layout 

Figure 2. Schematic diagram of graph representation for an apartment layout. The lefthand image is 
an apartment layout, and the righhand image is its graph. Each room is regarded as a node and the 
relationships between rooms are edges. Three different relationships – door, wall and virtual wal 
connection – are used for graph construction. 
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images of apartments. Research assistants identiϐied the room types as nodes and the 
relationships between rooms as edges based on their professional experience and knowledge, 
and constructed graphs as shown in Figure ʹ. 
 Over ʹ ͲͲ graphs were constructed based on the apartment layout images from three different 
countries ȋUK, US and ChinaȌ from the Internet. Seven main room classes were adopted. And three 
relationships between rooms inside an apartment were utilized to describe ͳȌ whether there is a 
door to access from room A to room B ȋdoor connectionȌ, ʹȌ whether there is a shared wall ȋwall 
connectionȌ, and ͵Ȍ where there are two independent spaces with no physical separation ȋvirtual 
wall connectionȌ. Note that only relationships were adopted in this experiment; all other 
topological and geometrical features were ignored as the contribution of the relationships was 
the focus of the analysis. One reason is that the relationships between data are hard to be 
presented and calculated by other data formats and machine learning approaches, while the 
nature of GNNs is to consider the relationships between nodes. Relationships can theoretically be 
retrieved from or inferred from IFC ϐiles directly. It means that the procedure can be applied to 
BIM models after compiling a parser that converts IFC ϐiles to the desired graph format. 
 The statistics of the dataset are illustrated in Figure ͵ . The dataset includes ʹ ʹͶ graphs, where 
ͳͲͲ come from China and the other ͳʹͶ are grouped as the UK and the US because apartments in 
these two countries have similar layouts. The seven main room types were selected as target 
prediction classes. The bedrooms had the most instances, ͷ͹͹ in total, while the laundry had the 
smallest number of occurrences, ͸Ͷ and ͺͳ respectively, in each of the sub-datasets.  
 

 

3.2 Training and testing 
The dataset was split into training, testing and validation subsets. The training and testing were 
done on a personal computer with an Intel ͸-core i͹ CPU ȋʹ.͹Ͳ GHzȌ and ͵ʹ.Ͳ GB RAM. We 
adopted Adam optimizer and cross-entropy to calculate the loss, and set the learning rate at Ͳ.ͲͲͷ 
and the training epoch at ʹͲͲ ȋShchur et	 al., ʹͲͳͺȌ. We adopted accuracy to measure the 
correctness performance during the testing phase, as shown in equation ȋͳȌ, and the confusion 
matrix to present each class̵s predictive ability in the model.  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ே௨௠௕௘௥ ௢௙ ௖௢௥௥௘௖௧ ௣௥௘ௗ௜௖௧௜௢௡௦

ே௨௠௕௘௥ ௢௙ ௣௥௘ௗ௜௖௧௜௢௡௦
 ȋ ͳ Ȍ 

Figure 3. Distribution of room types in the dataset. 

777



Z. Wang, T. Yeung et al.2021 Room Type Classification for SE of BIM Using GNNs 

Proc. of the Conference CIB W78 2021, 11-15 October 2021, Luxembourg 

4 Results and discussion 

4.1 GraphSAGE results 

 

The feature embedding learned by the model can also be investigated quantitively, and therefore 
we provide a visualization of the t-SNE ȋvan der Maaten and Hinton, ʹͲͲͺȌ used to degrade high-
dimensional embeddings in the last layer of GraphSAGE into a two-dimensional map, as shown in 
Figure Ͷ ȋaȌ. Each color presents a room class. The top right three classes, kitchen, living, and 
dining, are almost clearly differentiated, demonstrating that the model already has the ability to 
distinguish among them. The bedroom class, shown by brown points scattered in the lower left 
quadrant of the chart, has an accuracy of ͺ͹.ͷΨ. In contrast, toilet, balcony, and laundry classes 
were misclassiϐied to the bedroom class and distributed around it.  
 The performance is also reϐlected in the confusion matrix shown in Figure Ͷ ȋbȌ. Although the 
ϐirst four classes have an accuracy of over ͺͲΨ, the last three classes cannot be distinguished. In 
detail, ͶͲΨ, ʹ͹Ψ, and ʹ͵Ψ of the toilet, balcony, and laundry class instances were classiϐied 
incorrectly as bedrooms. Furthermore, these three classes have a high probability of being 
misclassiϐied as one of the other two classes. For example, ʹ ͻΨ and ͹Ψ of balcony instances were 
classiϐied as a toilet or a laundry, respectively. One reason may be that the three classes connect 
to the living room by door and wall connections with similar feature patterns, and they have fewer 
edges than living and bedroom classes.  

Generally speaking, GraphSAGE accurately classiϐied kitchen, living, dining, and bedroom 
classes, while its performance with the other classes was relatively poor. We emphasize that in 
this experiment, only relationships were used as the features for learning, and these were a 
limited set of the characteristics of entities in the model. The levels of accuracy achieved are 
considered reasonable as it is challenging even for a person to classify a room type based solely 
on the three relationships.  

4.2 Comparison with machine learning algorithms 
We also selected two machine learning algorithms to compare the performance, including a 
decision tree ȋSmola and Schölkopf, ʹͲͲͶȌ and a support vector machine ȋSong and Lu, ʹͲͳͷȌ. 
The two models were trained based on the same dataset with the same features. We ϐine-tuned 
their hyperparameters ȋe.g., learning rate, epochsȌ to achieve their best performance under this 
dataset. The test results are listed in Table ͳ. 

The two models achieved accuracies of ͷͷ.ͻΨ and ͷ͹.ͻΨ respectively. These results are 
around ͳͷΨ lower than those achieved using GraphSAGE. For the decision tree model, although 
the accuracy of the kitchen class was over ͺͲΨ, many other class instances were misclassiϐied as 

Figure 4. GraphSAGE results. (a) The t-SNE visualization of node embeddings in the last layer 
of the GraphSAGE model. (b) Confusion matrix and accuracy.   
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kitchens. For example, a majority of the living room instances ȋͷͺΨȌ were wrongly predicted as 
a kitchen. Even worse, the accuracy of toilet, balcony, and laundry classes was under ͷͲΨ, where 
most instances were output as a bedroom. A similar situation also happens to the SVM model. In 
contrast, only the balcony̵s accuracy was under ͷͲΨ in the GraphSAGE model, and most classes 
achieved an accuracy of over ͺͲΨ. After analysis, it is clear that GraphSAGE has higher accuracy 
and a more balanced ability to classify similar classes when compared with the two machine 
learning approaches.   

 

Table 1. Performance of the state-of-the-art ML algorithms for room classification. 

 

5 Conclusion 
The main contributions of this paper are the following: 

x Application of a new deep learning technique, graph neural networks, to BIM models 
expressed as graphs. GNNs consider the relationships between data, which are usually 
ignored by other data formats. Due to this natural mechanism, GNNs have the potential to 
solve challenging problems in BIM where relationships among entities play an essential 
role. 

x Compilation of an apartment room function and relationship dataset and its use to 
illustrate how to apply GNNs in a BIM context. The experiment results showed that 
GraphSAGE achieved ͹͵Ψ accuracy using the dataset and only using sparse node features. 

x Comparison of the GNN model with two machine learning algorithms under the same 
dataset and same features. GraphSAGE performed better than the other two machine 
learning approaches, with ͳͷΨ higher accuracy. 

 
The presented research is only a ϐirst step in applying GNNs to BIM models. In future work, we 
think it is worthwhile to explore the following three aspects:  

x Although four of the classes̵ performance in the GraphSAGE model is acceptable, the 
other three class predictions still have much room for improvement. One direction is to 
improve the model̵s prediction ability on all classes and have a more balanced 
performance.  

x We propose to do this by adapting the algorithm to consider edge features as well as node 
features. Current GNN models can only process node features because node-classiϐication 
open datasets do not have edge features. Yet edge features are necessary when building 
BIM graph datasets. Constructing an improved GNN model that can take both node and 
edge features into account can ϐill in the gap and improve the performance, in this and, 
presumably, in other similar problems.  

x Compilation and publication in the public domain of an open BIM graph dataset. 
Publishing an extensive BIM graph dataset will allow others to seek better GNN type 
solutions.  

Model

Accuracy

KIV LIV DIN BED TOI BAL LAU KIV LIV DIN BED TOI BAL LAU

KIV 83% 7% 3% 7% 0 0 0 86% 7% 0 7% 0 0 0

LIV 58% 39% 3% 0 0 0 0 52% 47% 2% 0 0 0 0

DIN 0 0 100% 0 0 0 0 0 0 100% 0 0 0 0

BED 1% 0 0 68% 21% 9% 1% 0 0 0 64% 25% 11% 0

TOI 0 0 0 47% 34% 12% 7% 0 0 0 41% 47% 12% 0

BAL 0 0 0 50% 9% 41% 0 0 0 0 25% 34% 41% 0

LAU 0 0 0 33% 58% 0 8% 0 0 0 13% 88% 0 0

Co
nf

us
io

n 
M

at
rix

Decision Tree

Predicted

57.87%

Support Vector Machine

55.84%
Predicted

Ac
tu

al
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